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1. Summary 
 
The major technical progress of this effort centered on three different interrelated activities, each of which 
were critical to the successful building of the software infrastructure necessary to implement an adaptive 
distributed sensor network. These activities involved the development of a distributed soft, real-time 
heuristic resource allocation protocol, the development of a domain-independent soft, real-time agent 
architecture, and finally the development of techniques for building and evolving an agent organization. 
Additionally, the distributed resource allocation protocol led to a new approach to solving distributed 
constraint satisfaction and optimization problems based on a mediation-based negotiation (partial 
centralization) with overlapping context and extended views along critical paths for search and 
communication efficiency. The distributed algorithms developed using this approach, called APO and 
optAPO have better performance than the best known complete and optimal distributed algorithms – 
AWC and ADOPT. 
 

2. Introduction 
 
The initial objectives of this project were to develop: 1) a domain-independent toolkit for distributed 
negotiations for task and resource allocation in demanding dynamic environments involving hard and soft 
real-time constraints and large numbers of agents that may have complex resource interactions and 2) 
analytic and empirical tools to estimate the performance metrics to determine the degree to which overall 
goals are met and understand the effectiveness of different negotiation protocols under a variety of 
operating conditions. Early in the project these high-level objectives were re-oriented towards solving the 
Autonomous Negotiating Teams (ANTs) Electronic Warfare (EW) sensor network challenge problem. 
However, we tried as much as possible to satisfy the initial project objectives in developing our solutions 
to the EW challenge problem.  
 
The negotiation toolkit that we developed can be thought of as a wrapper around a conventional agent 
problem-solving architecture that allows an agent to establish commitments with other agents to perform 
tasks (or use resources) that the agent cannot accomplish locally. This can occur because of the lack of 
appropriate resources or expertise, or due to overload of an agent’s resources as a result of tasks already 
committed to. The focus of negotiation is not only on locating agents to accomplish a task, but also on 
when and how they will accomplish the task in terms of resources used and the quality of the result 
produced. Negotiation may also result in agents needing to re-evaluate or relax their current objective 
functions and constraints in order to achieve the overall goals successfully.  
 
Before discussing the technical work in detail, let us first discuss at a high level the EW challenge 
problem. The sensor network hardware configuration consists of sensor platforms that have three 
scanning regions, each with a 120-degree arc encircling the sensor. Only one of these regions can be used 
to perform measurements at a time. The communication medium uses a low-speed, unreliable, radio-
frequency (RF) system over eight separate channels. Messages cannot be both transmitted and received 
simultaneously regardless of channel assignment, and no two agents can transmit on a single channel at 
the same time without causing interference. The sensor platforms are capable of locally hosting one or 
more processes, which share a common CPU (in this case a commodity PC and signal processing 
hardware). The goal of this application is to track one or more targets that are moving through the sensor 
environment (in this case model railroad trains traveling on railroad tracks whose pattern is unknown). 
The radar sensor measurements consist of only amplitude and frequency values, so no one sensor has the 
ability to precisely determine the location of a target by itself. The sensors must therefore be organized 
and coordinated in a manner that permits their measurements to be used for triangulation. The need to 
triangulate a target’s position requires frequent, closely coordinated actions amongst the agents, ideally 
three or more sensors performing their measurements at the same time. In order to produce an accurate 
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track, the sensors must therefore minimize the amount of time between measurements during 
triangulation, and maximize the number of triangulated positions. Ignoring resources, an optimal tracking 
solution would have all agents capable of tracking the target taking measurements at the same precise 
time as frequently as possible. Restrictive communication and computation, however, limits our ability to 
coordinate and implement such an aggressive strategy. Low communication bandwidth hinders complex 
coordination and negotiation, limited processor power prevents exhaustive planning and scheduling, and 
restricted sensor usage creates a trade-off between discovering new targets and tracking existing ones.  
 

3. Methods, Assumptions, and Procedures 
 
The key ideas that were used in developing distributed task allocation protocols that can operate 
effectively in large and complex environments are the following. First, there is no one best protocol for 
all situations; rather, what is needed is a family of protocols having different end-to-end completion 
times, meta-level information needs, and resource requirements. The approach to making the negotiation 
process operate in real time involves not only controlling the number of negotiation steps that are needed 
for arriving at a suitable decision, but also how much computation is required for each step. A family of 
protocols has been developed based on seeing this family as one basic protocol with many parameters 
that can be adjusted dynamically. Second, wherever possible, organizational and situational knowledge 
(learned or developed) should be exploited about the best agents with whom to negotiate, and what type 
of protocol should be used in this situation. Third, the negotiation can go on with respect to different 
granularities of resources.  Basic to the approach is that the protocol works at an abstract level of resource 
allocation and that it does not have to resolve all conflicts at this abstract level in order to generate an 
effective resource allocation plan. Because of the power of the soft real-time agent architecture that has 
been constructed to support negotiation, many resource conflicts that are unresolved at this more abstract 
level can be solved through local modification of an agent schedule to accomplish, in a partially degraded 
way, the activities that have resource conflicts. In this way, the protocol can take available time into 
account when deciding how much negotiation is possible in the current context. The negotiation protocol 
also exploits meta-level information about flexibility in other agents to make decisions among a small 
group of agents about how to best handle an over-constrained resource problem so that it does not 
propagate through the network. As part of this work on negotiation in an organizational context, the 
University of Massachusetts (UMASS) team focused on the issues of how dynamic organizations can be 
established as part of a higher-level negotiation process.  There are two issues that were addressed.  One 
was how to construct an initial organization with limited initial information, and the other was how to 
evolve the organization based on analysis of its more global performance characteristics. Additionally, in 
the later stages of the effort, a top-down knowledge-based approach was developed for defining an 
appropriate organization given the environment and resource characterizations of the overall problem.  
 
In order to understand the details of our approach, let us consider how they were implemented in the EW 
challenge problem.  First, we discuss the organization design used as a context for dynamic resource 
allocation. Next, we discuss the Soft, Real-Time Agent-architecture (SRTA), and finally, the Scalable, 
Periodic, Anytime Mediation (SPAM) distributed resource allocation protocol. 
 

 3.1 Organizational Design 
The notion of “organizational design” is used in many different fields, and generally refers to how entities 
in a society act and relate with one another.  This is true of multi-agent systems, where the organizational 
design of a system can include a description of what types of agents exist in the environment, what roles 
they take on, and how they interact with one another.  The objectives of a particular design will depend on 
the desired solution characteristics, so for different problems one might specify organizations that aim 
toward scalability, reliability, speed, or efficiency, among other things.   
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The organizational design used in this solution primarily attempts to address the scalability problem by 
concentrating knowledge within the agents that are most likely to need it and by imposing limits on how 
far certain classes of information propagate.  As will be seen below, this is done at the expense of reaction 
speed, because by limiting the scope any single agent has, one necessarily increases the required overhead 
when the agent’s task moves outside that scope.   

 
Figure 1: High-level architecture. A: sectorization of the environment; B: distribution of the scan schedule; C: 

communicating over tracking measurements, and D: fusion of tracking data. 

In the EW challenge problem, the environment itself is organizationally partitioned into a series of 
sectors, each a non-overlapping, rectangular portion of the available area, shown in Figure 1.A.  The 
purpose of this division, as will be shown below, is to exploit locality and limit the interactions needed 
between sensors.  In Figure 1.A, sensors are represented as divided circles, where each 120-degree arc 
represents a direction the node can sense in.  As agents come online, they must first determine which 
sectors they can affect.  Because the environment itself is bounded, this can be done trivially by providing 
each agent the height and width of the sectors.  The agents can then use this information, along with their 
known position and sensor radius, to determine which sectors they are capable of scanning in.  We use 
this technique to dynamically adapt the agent population for scanning and tracking activities to better 
partition and focus the flow of information.  

Within a given sector, agents may work concurrently on one or more of several high-level goals:  
managing a sector, tracking a target, producing sensor data, and processing sensor data.  The 
organizational hierarchy is abstractly represented in Figure 2.  The organizational leader of each sector is 
a single sector manager, which serves as the locus of activity for that sector.  This manager generates and 
distributes plans (to the sensor data producers) needed to scan for new targets, stores and provides local 
sensor information as part of a directory service, and assigns track managers.  The sector managers act as 
hubs within a nearly decomposable hierarchical organization, by directly specifying scanning activities, 
and then selecting agents to oversee tracking activities.  They also concentrate non-local information, 
facilitating the transfer of that knowledge to interested parties.  Individual track managers initially obtain 
their information from their originating sector manager, but will also interact directly, though less 
frequently, with other sector and track managers, and thus do not follow a fixed chain of command or 
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operate solely within their parent sector as one might see in a fully-decomposable organization.  Track 
managers will also form commitments with one or more agents to gather sensor data, but this relationship 
is on a voluntary basis, and that gathering agent’s behavior is ultimately determined locally. 

Figure 2: Overview of the agent’s organizational hierarchy, with some information flows represented. 

Because much of the information being communicated is contained within sectors, the size and shape of 
the sector has a tangible effect on the system’s performance.  If the sector is too large, and contains many 
sensors, then the communication channel used by the sector manager may become saturated.  If the sector 
is too small, then track managers may spend excessive effort sending and receiving information to 
different sector managers as its target moves through the environment.  

We found empirically that a reasonable sector in the EW challenge problem would contain 8 sensors, but 
would still function adequately with as many as 10 or as few as 5.  The physical dimensions of such a 
sector depend on the density of the sensors, and in different environments one would need to take into 
account sensor range, communication medium characteristics and maximum target speed.  Further 
information on partitioning agent populations, including a more sophisticated technique that utilizes 
heterogeneous regions, can be found in work by Sims in 2003.   
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Figure 3: An abstraction of the messages and reasoning used for target detection by sensor agents, sector and track 

managers. 

To see how the organization works in practice, consider a scenario starting with agents determining what 
sectors they can affect, and which agents are serving as the managers for those sectors.  Ideally, the sector 
managerial duty would be delegated and discovered dynamically at runtime, but due to the lack of a true 
broadcast capability in the RF communication medium, we statically define and disburse this information 
a priori1.  In Figure 1, these sector managers are represented with shaded inner circles.  Once an agent 
recognizes its manager(s), it sends each a description of its capabilities.  This includes such things as the 
position, orientation, and range of the agent’s sensor.  The manager then has the task of using this data to 
organize the scanning schedule for its sector.  The goal of the scan schedule is to use the sensors available 
to it to perform inexpensive, fast sensor sweeps of the area, in an effort to discover new targets.  The 
manager formulates a schedule indicating where and when each sensor should scan, and communicates 
with agents over their respective responsibilities in that schedule (see Figure 1.B).  The manager does not 
strictly assign these tasks. The agents have autonomy to decide locally what action gets performed when.  

                                                      
1 A limited broadcast capability does exist, which can reach all sensors listening on a single channel.  It is not 
possible in this architecture to broadcast a single message to agents that are using different channels. 
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This is important because sensors can potentially scan in multiple sectors, thus there is the possibility that 
an agent may receive multiple, conflicting requests for commitments from different sector managers.  The 
agent’s autonomy and associated local controller permit the agent itself to be responsible for detecting 
and resolving these conflicts.  If one receives conflicting requests for commitments, it can elect to delay 
or decommit as needed.  Shaded sensors in Figure 1 show agents receiving multiple scan schedule 
commitments.   

Once the scan is in progress, individual sensors report any positive detections to the sector manager which 
assigned them the scanning task, which can then spawn a new track manager as shown in Figure 3.  
Internally, the sector manager maintains a list of all local agents that currently perform the role of track 
manager, and location estimates for the targets they are tracking.  These location estimates are used to 
determine the likelihood of the positive detection being a new target, or one already being tracked.  If the 
target is new, the manager uses a range of criteria to select one of the agents in its sector to be the track 
manager for that target.  Not all potential track managers are equally qualified, and an uninformed choice 
can lead to very poor tracking behavior if the agent is overloaded or shares communication bandwidth 
with other garrulous agents.  Therefore, in making this selection, the manager considers the agents’ 
estimated load, communication channel assignment, geographic location and activity history.  Ideally, it 
will select an agent that has minimal channel overlap, is not currently tracking a target, but has tracked 
one previously.  This will minimize the potential for communication collisions, which occur if two agents 
on the same channel attempt to send data at the same time, but maximize the potential amount of cached 
organizational data the agent can reuse.  As we have seen previously, this notion of limited 
communication is an important motivating factor and recurring theme in this architecture that contributes 
to the organizational structure, role selection, protocol design and the frequency and verbosity of 
communication actions.   

The assigned track manager (shown in Figure 1.C with a blackened inner circle) is responsible for 
organizing the tracking of its assigned target.  To do this, it first discovers sensors capable of detecting the 
target, and then communicates with members of that group to gather the necessary data.  Discovery is 
done using the directory service provided by the sector managers.  One or more queries are made asking 
for sensors that can scan in the area the target is predicted to occupy.  The track manager must then 
determine when the scans should be performed, considering such things as the desired track fidelity and 
time needed to perform the measurement, and coordinate with the discovered agents to disseminate this 
goal (see Figure 1.C).  As with scanning, conflicts can arise between the new task and existing 
commitments at the sensor, which the agent must resolve locally.  

The data gathered from individual sensors is collected by an agent responsible for fusing the 
measurements into a location estimate and extending the computed track (see Figure 1.D).  In a general 
sense, this data fusion agent could be any agent in the population able to communicate efficiently with 
both the data sources and the ultimate destination of the tracking data.  However, the data fusion process 
for this application is fairly lightweight, and thus does not benefit from distribution for load balancing 
purposes.  In addition, transferring the fused data results introduces an unnecessary delay while it is being 
communicated to the track manager. For this reason, in this work, the data fusion and track manager roles 
are always performed by the same agent.   

When the track manager receives raw measurement data, it verifies the quality and association of the 
measurement.  Quality can be measured by several means, and in this work, the signal-to-noise ratio is 
used.  If a measurement is returned with significantly high signal strength, it is considered for potential 
fusion.  The association of a measurement really involves two different things:  temporal and target 
association.     

Temporal association attempts to match measurements taken from various sensors based on the time the 
measurements were taken.  As previously mentioned, the accuracy of triangulating a moving target is in 
part dependent on the relative temporal coordination of the measurements.  If a track manager were to 
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fuse measurements that were taken over a wide range of time, the resulting estimation could be quite 
poor.  There are several reasons why a measurement may be returned that cannot be temporally associated 
with measurements from other sensors.  One reason is delays and loss introduced by the communications.  
For example, if the commitment request from the track manager never gets to the sensor, no measurement 
will be taken.  Another reason is unresolved resource contention within the individual sensors. If, for 
example, one of the sensors decides to delay the start of a measurement in order to deconflict its internal 
schedule, it will be harder to match the resulting measurement with data from other sensors.   

Within our system, temporal association maintained by queuing measurements for a finite period and 
matching them with one another based on their actual measurement time.  We make the assumption that 
the computers controlling the sensors are time synchronized using a Network Time Protocol (NTP) like 
mechanism.   

Target association, as the name implies, tries to match measurements with targets.  Consider the case of 
two targets, T1 and T2, which are following one another through the sensor field.  Now imagine that T1 
moves out of the viewable area of one of the sensor heads being used to measure it and T2 moves into this 
head’s view.  If a measurement is taken by that head before the T1’s track manager changes its allocation, 
the resulting amplitude will be of the wrong target.  When this measurement is fused with the track of T1, 
it will appear to be closer to T2 than before.  Over time, if this pattern continues, the targets will be 
indistinguishable from one another.  In fact, T1 could end up being ignored and both track managers 
could try to track T2.     

To prevent this from happening, track managers check to ensure that each measurement has a higher 
likelihood of belonging to their target than others that may be near to it.  To do this, we exploit the view 
of the sector manager.  Because sector managers are periodically given estimated target locations for all 
of the targets within their sector, it is easy for them to determine when two or more track managers are 
likely to have a target association problem.  When the sector manager detects this possibility, it informs 
the appropriate track managers by sending them the locations of the target that are close to them.  This 
allows the track managers to discard any measurement that was likely to have been collected by a sensor 
viewing another target.  If, for some reason, two track managers do fuse their target into one, the sector 
manager can also recognize this fact and inform one of the managers to stop tracking.  This alleviates the 
unnecessary resource contention created by having two track managers fight over the same resources to 
track the same target.    

If the data values returned are of high enough quality, and the agent determines those measurements were 
taken from the correct target, then they are used to triangulate what the position of the target was at that 
time.  This data point is then added to the track, which itself is used as a predictive tool when determining 
where the target is likely to be in the future.  At this point the track manager must again decide which 
agents are needed and where they should scan, and the sequence of activities is repeated.  

Partitioning the environment reduces the amount of information and processing that agents must perform 
for several different tasks.  For example, generating a coherent scan schedule for a group of sensors is 
simplified by only taking into account a tractable number of them.  Similarly, when a new target is 
detected as a result of a scan, that information can be sent to only the appropriate sector manager, which 
can determine directly if it is a new or existing target based on local information.  Sectors also facilitate 
gathering data about the sensors themselves, as track managers need only perform a single query to the 
appropriate sector manager to discover all the sensors available within that region (see Figure 4).  In fact, 
the partitioning makes nearly every aspect of this solution scalable to arbitrary numbers, with the 
exception of the tracking allocation, which has its own solution to this problem, as shown later.  As a side 
effect, partitioning does reduce the system’s reactivity, because an extra step may be required to fetch 
information that is not available locally.  We cope with this problem wherever possible by caching such 
data to avoid redundant queries, and by assigning new roles whenever possible to agents that have served 
that same role in the past, to take advantage of that cached data.   
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Figure 4: As the target moves to another sector, the track manager queries the manager of the new sector. 

Although not required in the scenarios we present here, it is interesting to note the applicability of this 
organization to situations where agents have an additional limitation or attenuation of communication 
capability based on the geographic distance separating the participants. In this case, this partitioned 
organization could serve as the basis of an ad-hoc network, where messages are routed from one sector to 
the next, using the organizational structure as a guide, until they reach their destination.  This further 
emphasizes the notion that “local” communication is more efficient, and the locality of information 
should be exploited by the organization to take advantage of it.   

In this section we have shown how the organization plays a critical role in ensuring that information 
flowing within the sensor network is managed to both minimize the delay and expensive of 
communication and to maximize its availability for effective decision making.  The next section describes 
some of the mechanisms that go into forming the agent-level control of the sensors. 

 
 3.2 Agent Architecture  

 3.2.1 Soft Real-Time Control 

The Soft Real-Time Control Architecture (SRTA), the agent control engine used by this solution, 
provides several key features to the agents within our sensor network:  

1. The ability to quickly generate plans and schedules for goals that are appropriate for the available 
resources and applicable constraints, such as deadlines and earliest start times.   

2. The ability to merge new goals with existing ones, and multiplex their solution schedules.   
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3. The ability to use explicit representations of uncertainty and efficiently handle deviations in expected 
plan behavior that arise out of variations in resource usage patterns and unexpected action 
characteristics. 

Figure 5: The soft real-time control architecture. 

Abstractly, SRTA (shown in Figure 5) operates as a single functional unit within an agent, which itself is 
running on a conventional (i.e., not real-time) operating system.  The SRTA controller is designed to be 
used in a layered architecture, occupying a position below the high-level reasoning component in an 
agent.  In this role, it accepts new goals, reports the results of the activities used to satisfy those goals, and 
also serves as a knowledge source about the potential ability to schedule future activities by answering 
“what-if” style queries.  The components that comprise SRTA assume a majority of the responsibility 
needed to satisfy goals, which allows the high-level reasoning system to focus on goal selection, 
determining goal objectives and other potentially domain-dependent issues. For example, agents may 
elect to coordinate using abstractions of their activities or resource allocations, which are then locally 
translated into a precise schedule.  SRTA can then use these schedules to both enforce the semantics of 
the commitments which were generated, and automatically attempt to resolve conflicts that were not 
addressed through coordination.  In the next section, TÆMS, the modeling language used to describe 
goals to SRTA, is explained.  Following that, we will show how the components of the SRTA 
architecture work together to provide the agents with the ability to handle multiple, concurrently 
executing goals.   
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 3.2.2 The Task Analysis, Environmental Modeling and Simulation 

The Task Analysis, Environmental Modeling and Simulation (TÆMS) language is used to quantitatively 
describe the alternative ways a goal can be achieved.  A TÆMS task structure is essentially an annotated 
task decomposition tree.  The highest-level nodes in the tree, called task groups, represent goals that an 
agent may try to achieve.  For example, the goal of the structure shown in Figure 6 is Setup-
Hardware.  Below a task group there will be a set of tasks and methods that describe how that task 
group may be performed, including sequencing information over subtasks, data flow relationships and 
mandatory versus optional tasks.  Tasks represent sub-goals, which can be further decomposed in the 
same manner.  Setup-Hardware, for instance, can be performed by completing Startup, Init, and 
Obtain-Background-Noise.   Methods, on the other hand, are terminal, and represent the primitive 
actions an agent can perform.  Methods are quantitatively described, in terms of their expected quality, 
cost and duration.  Activate-Sector_0, then, would be described with its expected duration and 
quality, allowing the scheduling and planning processes to reason about the effects of selecting this 
method for execution.  The Quality Accumulation Function (QAF) below a task describes how the quality 
of its subtasks is combined to calculate the task’s overall quality.  For example, the q_min QAF below 
Init specifies that the quality of Init will be the minimum quality of its subtasks — so all the subtasks 
must be successfully performed for the Init task to succeed.  Interactions between methods, tasks, and 
affected resources are also quantitatively described.   

The curved lines in Figure 6 represent resource interactions, describing, for instance, the produces and 
consumes effects that method Set-Sample-Size has on the resource SensLock, and how the level 
of SensLock can limit the performance of the method.  TÆMS structures are used our agents to 
describe how particular goals may be achieved.  Rather than hard coding, for by instance, the task of 
initializing the sensor, we encode the various steps in a TÆMS structure similar to that shown in Figure 6.  
This simplifies the process of evaluating the alternative pathways by allowing the designer to work at a 
higher level of abstraction, rather than be distracted by how it can be implemented in code.  More 
importantly, it also provides a complete, quantitative view that can be reasoned about by planning, 
scheduling and execution processes.  A given task structure begins its existence when it is created, read in 
from a library (Figure 5-1), or dynamically instantiated from a template at runtime.  Planning elements 
are involved both in the generation of the structure, and then in the selection of the most appropriate 
sequence of methods from that structure which should be performed to achieve the goal given the 
currently available resources.  This sequence is then used by a scheduling process to determine the correct 
order of execution, with respect to such things as precedence constraints and resource usage.  Finally, this 
schedule will be used by an execution process to perform the specified actions, the results of which are 
written back to the original task structure. The schedules produced by individual TÆMS structures are the 
building blocks for an agent’s overall schedule of execution.  A valid schedule completely describing an 
agent’s activities will allow it to correctly reason about and act upon the deadlines and constraints that it 
will encounter, for example a resource restriction.  Typically, however, schedules are only used to 
describe lower-level activity.  In the EW challenge domain, this encompasses sensor initialization, 
scanning and tracking activity, data fusion and the like. 
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   3     3.2.3 Scheduling 

In the SRTA architecture, we have attempted to make the scheduling and planning process incremental 
and compartmentalized.  New goals can be added piecemeal to the execution schedule, without the need 
to re-plan all the agent’s activities, and exceptions can be typically handled through changes to only a 
small subset of the schedule.  Figure 5 shows the organization of SRTA.   

In this architecture, goals can arrive at any time, in response to environmental change, local planning, or 
because of requests from other agents.  The goal is used by the problem-solving component to generate 
a TÆMS task structure, which quantitatively describes the alternative ways that the goal may be 
achieved.  The TÆMS structure can be generated in a variety of ways; in our case we use a TÆMS  
“template” library, which we use to dynamically instantiate and characterize structures to meet current 
conditions. Other options include generating the structure directly in code, or making use of an 
approximate base structure and then employing learning techniques to refine it over time.  SRTA uses the 
Design-To-Criteria (DTC) component to generate linear plans solving the goal described in the TÆMS 
structure (Figure 5-2).  It employs a battery of techniques to efficiently discover and reason about the 
various activity schedules that can address that goal. The ability to make trade-offs while respecting 
commitments is particularly important, as DTC attempts to select the quantitatively “best” plan that meets 
the specified requirements.  DTC uses criteria such as potential deadlines, minimum quality, external 
commitments, and soft and hard action interrelationships to select an appropriate sequence of activities.     

The resulting plan is used to build a partially ordered schedule, which uses structural details of the TÆMS 
structure to determine precedence constraints and search for actions which can be performed in parallel 
(Figure 5-3).  The Partial Order Scheduler (POS) also provides the ability to quickly shift 
execution order at any point in time instead of performing costly re-planning.  In a real-time environment, 
schedule adjustments are more frequent; by not imposing unnecessary ordering constraints on our agent’s 
schedule the agent has a better chance of achieving the time, cost and quality criteria of its goal.  A pair of 
specialized components is used to assist the POS during this final scheduling phase.  The first, a resource-
modeling component, is used to ensure that resource constraints are respected (Figure 5-4).  A schedule-
merging module then allows the partial order scheduler to incorporate the actions derived from the new 
goal with existing schedules (Figure 5-5).  Our notion of “parallel” in this architecture includes activities 
that run concurrently in parallel, as in a multiple processor environment, and those that run virtually in 
parallel, as in a time-slicing, multi-processing operating system.  If we view the sensor as a specialized, 
separate processor, our task structures contain both types of methods.  For instance, a sensor measurement 
action can take place concurrently with actions on the primary processor.  Unifying these notions 
simplifies the scheduling process, and can be represented appropriately using TÆMS.  Once the schedule 
has been created, an execution module is responsible for initiating the various actions in the schedule 
(Figure 5-6).  It also keeps track of execution performance and the state of actions’ preconditions, 
potentially re-invoking the partial order scheduler when failed expectations require it.  Using the ordering 
constraints described in the schedule, the execution component can directly determine which methods can 
be run concurrently.  By overlapping their execution, we reduce the total execution time, which 
effectively increases the agents overall work capacity.  The gain in execution time, and resulting 
flexibility, is used to address resource availability, in addition to improving the likelihood the scheduler 
can accommodate real-time changes without breaking deadline constraints.  If this is unsuccessful, a 
conflict resolution module is used to reason about mutually exclusive tasks and commitments, 
determining the best way to handle conflicts (Figure 5-7).  Repairs can be accomplished in a variety of 
ways, for instance, by relaxing constraints such as the goal completion criteria or delaying its deadline, 
completing a substitute goal with different characteristics, or decommitting from a lower-priority goal or 
the goal causing the failure. 

The execution characteristics of the SRTA architecture as a whole depend largely on the frequency and 
complexity of the goals it is asked to plan and schedule.  On average, we observe cycle times of between 
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50 and 100 milliseconds on 400 MHz x86-based systems, although this can jump to a half-second or more 
if a particularly complex situation arises.  A cycle represents a single pass of the SRTA engine analyzing 
the current goals and executing methods.  Because the system runs on a conventional operating system 
(Linux in this case), competing external processes may add an additional level of performance 
uncertainty. 
 

 3.3 Resource Allocation 
Here we describe the SPAM resource allocation protocol that provides this system with the ability to 
handle resource conflicts by elevating the decision making to the track managers. 

 3.3.1 Tracking as Resource Allocation 

Modeling the target-tracking domain as a resource allocation problem is fairly straightforward.  Each of 
the targets in the environment can be considered a task, which is assigned to a track manager. The sensors 
are the resources and the job of the track managers is to obtain enough sensing time from the correct 
sensors to track their targets.  There are a number of characteristics about this particular resource 
allocation problem that make it challenging.  The first is that, although this problem can be solved crudely 
using constraint satisfaction techniques, it lends itself most naturally to being solved using some type of 
optimization.  Optimization is a good fit for two reasons.  The first is that the value of a sensor platform to 
a track manager is directly correlated with the distance and relative angle of its most appropriate sensor 
head to the manager’s target. Increasing the angle or distance decreases the accuracy and the resulting 
value of a measurement.  In addition, increasing the number of sensors involved in taking coordinated 
measurements improves the accuracy of the resulting location estimation (see Figure 7). 

 
 

Figure 7: Utility of taking a single, coordinated measurement from a set of sensors. 
 
The goal of the track managers, therefore, is not simply to come up with a conflict free resource 
assignment, but to derive a solution that maximizes the number and the value of the sensors used to track 
the targets. The second major difficulty is the need to temporally coordinate the actions of the sensors.  
Coordinating the resources in this way adds another dimension to the problem and increases its difficulty 
considerably.  The biggest problem with temporal coordination is that time is a continuous value.  There 
are essentially an infinite number of possible combinations to consider when trying to deconflict and 
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coordinate the sensor schedules. As mentioned in the previous section, the method used in this system to 
reduce the number of possible combinations is to use a finite planning horizon on a slot-based schedule. 
By using temporally coordinated slots, the track managers lose the ability to perform fine-grained 
scheduling, but the overall complexity of the resource allocation is decreased.  So, in fact, the track 
managers not only have to maximize the number and value of the sensors, but they also have to maximize 
the amount of time those sensors dedicate to taking measurements for their target.  If we say that Ms

i  is 
the set of good sensors measurements (can see the target) leading to the positional estimate in a single slot 
s for a task i, and Util( Ms

i) is defined as the utility function in Figure 7 then the utility function for that 
task during a specific period is: 

 
Fortunately, the need for coordination actually allows us to consider a much smaller subset of the possible 
allocations for a given task.  In fact, track managers within our system use a simplified set of objective 
levels defined by their utility functions to assign resources to their targets.  Each objective level is 
expressed as a cross product Dm × Ds denoting the number for sensors desired for a number of slots in the 
planning horizon.  For example, a track manager may wish to have three sensors for two slots, which is 
denoted 3× 2.  Although the number of slots in a period is variable, for this domain we typically set it to 
match the number of sensor heads on each platform, which is three.  In order to prevent certain targets 
from being ignored in order to improve the quality of another target's estimate, track managers are 
penalized for not triangulating their target during a full period.    

The third characteristic of interest is the dynamic nature of the problem. As the targets move through the 
environment, moving in and out of the range of the sensors, the underlying resource allocation problem 
changes in structure.  This drives the need to constantly monitor, re-evaluate, and reallocate the sensors 
used to measure the positions of the targets.  It also means that any method used to allocate the resources 
has to be responsive to changes that occur in the middle of the allocation process.   

The last major challenge is that the allocation technique needs to be resource aware.  The communications 
infrastructure is RF-based, which in this case makes it very slow and unreliable.  These properties make it 
essential to not only limit the amount of communications, but to be aware of and adapt to changes in the 
overall ability to communicate.  For example, if it is taking a long time to get messages to a particular 
track manager, it probably makes sense to avoid creating conflicts with it.  Also, if a particular allocation 
is only useful for a very short period of time, it may not make sense to engage in a complex reallocation 
process when a simpler one may meet the basic need to track.   

 3.3.2 The SPAM Protocol 

This section describes the Scalable, Periodic, Anytime Mediation (SPAM) protocol, which uses 
cooperative mediation to solve a dynamic, distributed optimization problem. The SPAM algorithm is built 
around the principle of “good enough, fast enough.” As such, the protocol is actually divided into two 
major stages.  Stage 1 of the protocol uses local information to derive and bind temporary solutions that 
are seldom free of conflict and are often based on inaccurate, incomplete information.  Stage 2 of the 
protocol solves conflicts and distributes resources by initiating a cooperative mediation session.  During a 
mediation session, one of the track managers takes on the role of mediator.  As the mediator, it gathers 
information from track managers that are in conflict, computes and recommends possible solutions to the 
problem, and then announces a final solution.  The SPAM protocol is activated under two conditions.  
The first condition occurs when the resources needed to track a target change due to a target’s movement.  
These types of changes often alter the structure of the underlying optimization problem.  As such, 
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whenever they occur, managers instantiate the first stage of the protocol to quickly modify their current 
solution or to create an initial solution in the case of a new target assignment.  Once stage 1 completes, a 
manager can choose to begin a mediation session if they determine that the benefits outweigh the costs.     

The second case occurs when a manager detects a conflict within one of the resources it is using.  This 
type of conflict is caused when another manager is unable to mediate a session, is able to mediate but due 
to latency has not yet begun it, or is unaware that the resource is already being used.  In each of these 
cases, the manager detecting the conflict has the option to immediately activate stage 2 and mediate a 
session to repair it.  A distributed locking mechanism prevents more than one manager from concurrently 
mediating if latency was the cause of the conflict detection.     

 3.3.3 Stage 1 

Stage 1 of SPAM serves three primary functions.  The first function is to attempt to find a solution within 
the context of the information that the protocol has when it starts up.  Like the Asynchronous Weak 
Commitment (AWC) protocol, each of the agents tries to find an assignment that is consistent with its 
potentially incomplete or inconsistent agent_view.  However, because this protocol attempts to maximize 
the social utility, each of the agents tries to maximize their local utility without causing new constraint 
violations.  If this can be done, then no further mediation is necessary, and the protocol terminates at the 
end of stage 1.   

We should mention that a trade-off exists between communication overhead and utility, due to the initial 
selections of the objective level in stage 1.  If each of the managers chooses to use every available 
resource (sensors able to see their target), the possibility for contention over resources greatly increases in 
the environment, thereby causing the execution of stage 2 to occur more frequently.  However, if the 
agents decide to start with a lower objective level (and correspondingly less utility), the social utility may 
suffer unnecessarily.   

Stage 1 has what we refer to as a concession rate.  The concession rate defines what percentage of the 
local solution quality a track manager is willing to concede to find a violation-free solution in an attempt 
to avoid a potentially expensive stage 2-mediation session.  So, as the manager’s utility drops, the amount 
they are willing to concede drops as well.  This causes managers to mediate (stage 2) more frequently in 
critically constrained tracking environments.   

The second function of stage 1 is to ensure some utility is obtained while waiting for stage 2 to complete.  
Since these temporarily applied solutions are only applied when a completely conflict-free assignment is 
not possible, unresolved conflict are left to the individual sensor agents to handle.  As mentioned in the 
previous section, sensor agents can use one of a number of techniques, including slot boundary shifting, 
less expensive measurement types, or task rotation, in order to resolve such conflicts.  To the track 
manager, whether or not they get a measurement from a conflicted sensor is probabilistically random.   

Temporarily applied solutions do not use the concession rate.  In fact, because of environmental changes 
and the probabilistic nature of getting measurements from conflicted sensors, managers always use their 
maximum possible objective level (within the bounds of the number of sensors that can see the target).  
The reason for this is rather subtle, but important.  Let’s say that a new resource was added to the possible 
resources that could be used by manager T1.  Let’s also say that another manager, T2, who has more than 
enough available resources for itself, was using that entire resource.  If T1 starts mediation at that lower 
level, it can never obtain its highest level as a result of the session, even though a solution exists where T2 
just gives up the entire conflicted resource.     

The third purpose of stage 1 relates to the anytime characteristics of the protocol.  Because a solution is 
always derived and applied during stage 1, managers don’t necessarily have to enter stage 2.  They can 
stop the process at the end of stage 1 and accept the results that they have achieved.  This is often done if 
a target’s movement causes the resource needs to change faster than the expected time it would take to 



16 

complete stage 2.  The expected time to complete stage 2 is computed based on both previous experience 
and the current estimated channel loads for the track managers that would be in the mediation session. 

 3.3.4 Stage 2 

 
Figure 8: Stage 2 of the SPAM protocol. 

Stage 2 is the heart of the SPAM protocol (See Figure 8).  Stage 2 attempts to resolve all of the local 
conflicts a track manager has by elevating the problem to the track managers that are using the desired 
resources.  To do this, the originating track manager takes the role of the mediator (note that multiple 
sessions can occur in parallel in the environment).  As the mediator, it becomes responsible for gathering 
all of the information needed to generate alternative solutions, creating solutions that may involve 
changes to the objective levels of the managers involved, and finally choosing a solution to apply to the 
problem.  These solutions are generated without full global information and may lead to newly introduced 
non-local conflict.  If this occurs, other track managers can begin sessions, which propagate the conflict 
even further.     

The best way to explain the operation of stage 2 is through an example.  Consider Figure 9, which depicts 
a commonly encountered form of contention.  Here, track manager T2 has just been assigned a target.  
The target is located between two existing targets that are being tracked by track managers T1 and T3.  
This creates contention for sensors S3, S4, S5, and S6.     

Following the protocol for the example in Figure 9, track manager T2, as the originator of the conflict, 
takes on the role of mediator.  It begins the mediation session by requesting information from each of the 
track managers involved in the resource conflict.  Upon receiving the request, each track manager replies 
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with their current objective level, the number of sensors which can see their target, the names of the 
sensors that are in direct conflict with the mediator, and any additional conflicts that the manager has.  To 
continue our example, T2 sends a request for information to T1 and T3.  T1 and T3 both return that they 
have four sensors that can track their targets, the list of sensors that are in direct conflict (i.e., T1(S3, S4), 
T3(S5,S6)) their objective level (4 × 3 for both of them) and that they have no additional conflicts outside 
of the immediate one being considered.  

As seen in Figure 8, T2 enters a loop that attempts to generate solutions followed by lowering the 
objective level of one of the track managers if none exist.  A heuristic method, designed to balance the 
resources, is used to choose the track manager to lower.  Namely, the track manager is chosen that has 
both the highest objective level and is unable to support it without using resources from the set of sensors 
being mediated over.  Whenever two or more managers have the same highest objective level, we choose 
to lower the objective level of the manager with the least amount of external conflict.  By doing this, it is 
our belief that track managers with more external conflict will maintain higher objective levels, which 
provides them with leverage in resolving subsequent conflicts that may occur as a result of 
propagation.  

 
Figure 9: Example of a common contention for resources.  Track manager T2 has just been assigned a target and 

contention is created for sensors S3, S4, S5 and S6. 

Note that although this has similarities to the techniques used in Partial Constraint Satisfaction (PCSP)s, 
this differs in that the problem changes as the objective levels are changed.  PCSP techniques choose to 
satisfy some subset of the constraints; this technique changes the constraints themselves until the problem 
is satisfiable.     

The solution generation loop is terminated under one of two conditions.  First, if given the current 
objective levels for each of the track managers the mediator is able to generate at least one satisfying 
assignment, then the session enters the solution evaluation phase.  Second, the session ends if the 
mediator cannot generate a satisfying assignment and it cannot drop the objective level of one of the track 
managers in the session.  Under these conditions, the session is terminated and the mediator lowers its 
own objective level to the lowest possible level, conceding that it cannot find a satisfying assignment, and 
binds a solution, which minimizes the number of conflicts.     

Continuing our example, T2 first lowers the objective level of T1 (choosing T1 at random because they 
all have equal external conflict).  No satisfying assignments are possible under the new set of objective 
levels, so the loop continues.  It continues, in fact, until each of the track managers has an objective level 
of 3 × 2 at which time T2 is able generate a set of 216 satisfying assignments to the problem. 

During solution evaluation, the mediator proposes the set of solutions to each track manager by sending 
them a list of sensor assignments that occur in at least one solution.  Because each of these assignments is 
part of a solution, each the lists have the important property that they are arc-consistent with the lists 
being transmitted to the other managers in the session.  In addition, the mediating track manager is 
guaranteed to have a conflict-free sensor assignment whenever it successfully concludes a session.   

Upon receiving their list, each of the track manager rates the assignments based on their local agent_view 
and their internal utility functions.  Continuing our example, T2 sends a list of assignments to T1, a list of 
assignments to itself, and a list of assignments to T3.  In our system, track managers rank the assignments 
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based on a utility function that includes the amount of conflict that will be introduced by taking the 
assignment and on the desirability of the sensors.  This is similar to the min-conflict heuristic and is an 
integral part of the hill-climbing nature of the algorithm.     

Once the mediator has the ratings from the track managers, it chooses a particular solution to apply to the 
problem.  This is done using a dynamic priority method based on the number of constraints each of the 
managers has external to the mediation, a form of meta-level information.  The basic notion is similar to 
the priority order changes in AWC: try to find the task that is most heavily constrained and elevate it in 
the orders.  Our impression is that this helps stem the propagation because it leaves the most constrained 
tasks with the best choices.  This allows those managers to maintain violation-free solutions if they exist 
in the alternatives presented to them.     

 
Figure 10: A solution derived by SPAM to the problem in Figure 9.  The table on the left is before track manager T2 

mediates over T1 and T3.  The table on the right is the result of stage 2.    

In our example, T2 collects the ordering from T1, T2, and T3.  T3 is given first choice.  By its ordering, it 
ranked alternative 0 the highest.  This restricts the choice for T2 to alternatives 0, 1, 2, and 3.  T2 ranked 0 
highest from this set of alternatives, restricting T1’s choice to its 0th, 1st, and 2nd alternatives.  It turns 
out that T1 likes its 0th solution the best so the final solution is composed of T3’s alternative 0, T2’s 
alternative 0, and T1’s alternative 0.   

The last phase of the protocol is the solution implementation phase.  Here, the mediator simply informs 
each of the track managers of its final choice.  Each of the track managers then implements the final 
solution.  At this point, each of the track managers is free to propagate and mediate if it chooses.  Figure 
10 shows the configuration of the sensors before and after T2 completes stage 2.   

  
4. Results and Discussion 
 
The following is a list of the major accomplishments on the project: 

• Development of SPAM heuristic resource allocation protocol 
o Showed importance of mediation-based negotiation (partial centralization) with overlapping 

context and extended views along critical paths for search and communication efficiency 
• Development of APO distributed constraint algorithm and optAPO distributed optimization algorithm 
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based on SPAM concepts 
o Better performance than best known complete and optimal algorithms – AWC and ADOPT 

• Development of SRTA soft real-time architecture 
o Demonstrated that a sophisticated domain-independent agent architecture that operates in soft 

real-time could be built  
• Demonstrated importance of organizational structuring for distributed resource allocation 

o Showed how using negotiation organization could be dynamically constructed and efficiently 
modified as the environment changed 

o Showed how an organization could be designed top-down 
o Showed how the performance of a reasonably complex organization could be empirically 

analyzed and modeled analytically 
Each of these topics is covered in detail in the collection of papers in the appendices (the complete list of 
supported publications is included in the bibliography). 
  
5. Conclusions 
 
We have described our solution to a real-time distributed tracking problem.  The agents in the 
environment are first organized by partitioning them into sectors, reducing the level of potential 
interaction between agents.  Within each sector, agents dynamically specialize to address scanning, 
tracking, or other goals, which are instantiated as task structures for use by the SRTA control architecture.  
These elements exist to support resource allocation, which is directly effected through the use of the 
SPAM negotiation protocol.  The agent problem solving component first discovers and generates 
commitments for sensors to use for gathering data, then determines if conflicts exist with that allocation, 
finally using arbitration and relaxation strategies to resolve such conflicts.  We have empirically tested 
and evaluated these techniques in both the Radsim simulation environment and using a hardware-based 
system.   

Despite the fact that many of the details of our solution were designed for the distributed sensor net 
problem, much of the higher-level architecture is quite general, and applicable to different problems.  
SRTA, for instance, uses the domain-independent TÆMS language as its basis, which can and has been 
used successfully in a variety of domains.  The SPAM negotiation protocol can be used to solve new 
distributed, interdependent resource allocation problems by implementing a suitable objective function.  
SPAM’s technique of allowing conflicts to exist and be resolved by local control concurrent with a more 
complete allocation search can be used in nearly any environment where the participants are tolerant of 
such uncertainty.  Our organizational structure as a whole is quite specific, but individual aspects such as 
partitioning, task migration and local control are general and applicable to a variety of different 
distributed architectures.   

 
6. Technology Transfer 
   
The technology developed in the project has had significant impact on how the following military and 
non-military applications have been approached. 
• Rockwell Collins, Inc. is considering SRTA architecture components and SPAM/APO for DARPA 

HURT. 
• The SPAM/APO is being evaluated by Boeing for air space deconfliction as part of their network-

centric operations deconfliction thrust. 
• Honeywell Laboratories has licensed the TÆMS/SRTA technologies for research use in First-

Responder Applications. 
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• Real-time Tornado Tracking using Network of Phase-Arrayed Radars as part of NSF ERC at 
University of Massachusetts—scheduled for initial deployment in Oklahoma in 2006. 
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Bryan Horling. 
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A Cooperative Mediation-Based Protocol for
Dynamic, Distributed Resource Allocation

Roger Mailler and Victor Lesser

Abstract— In this article, we present a cooperative mediation-
based protocol that solves a distributed resource allocation prob-
lem while conforming to soft real-time constraints in a dynamic
environment. Two central principles are used in this protocol
that allow it to operate in constantly changing conditions. First,
we frame the allocation problem as an optimization problem,
similar to a Partial Constraint Satisfaction Problem (PCSP), and
use relaxation techniques to derive con ict (constraint violation)
free solutions. Second, by using overlapping mediation sessions
to conduct the search, we are able to prune large parts of the
search space by using a form of arc-consistency. This allows the
protocol to both quickly identify situations when the problem is
over-constrained and to determine the appropriate repair. From
the global perspective, the protocol has a hill climbing behavior
and because it was designed to work in dynamic environments, is
an approximate one. We describe the domain which inspired the
creation of this protocol, as well as discuss experimental results.

I. INTRODUCTION

Resource allocation is a classic problem that has been stud-
ied for years by multi-agent systems researchers [1], [2]. The
reason for this is that resource allocation shares a number of
characteristics that are common to a wide range of multi-agent
domains. For example, resource allocation requires search
and is often too complex and time consuming to perform in
a centralized manner when the environmental characteristics
are both distributed and dynamic. In fact, in environments
where search is being conducted and the costs associated with
continuously centralizing a lot of information are impractical,
distributed techniques become imperative.

Cooperative, iterative search (negotiation), has been viewed
as a viable technique for handling complex searches of this
type that include multi-linked interacting subproblems [1].
Unfortunately, a common drawback to this technique is that it
prevents the agents from making informed decisions about the
effects of changing their local allocation without actually doing
it. Because of the length of time required for this technique to
converge on a solution, researchers have often abandoned the
optimization portion of resource allocation, instead modeling
them as distributed constraint satisfaction problems [3], [4], in
order to provide reasonable solution speed.

In this work, we extend the traditional formulation of the
resource allocation problem in two ways. First, we introduce
soft real-time deadlines on the protocol’s behavior. These
deadlines require the protocol to adapt to the remaining
available time, which is estimated dynamically as a result of
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emerging environmental conditions. Second, we reformulate
the resource allocation task as an optimization problem, and
like the Distributed Partial Constraint Satisfaction Problem
(PCSP) [5]–[7], use constraint relaxation techniques to  nd
a con ict-free solution while maximizing the social utility of
the agents.

In this article, we present a distributed, mediation-based
protocol that takes advantage of the cooperative nature of
the agents in the environment to maximize social utility.
By mediation-based, we are referring to the ability of each
of the agents to act in a mediator capacity when resource
con icts are recognized. As a mediator, an agent gains a
localized, partial view of the global allocation problem and
makes suggestions to the allocations for each of the agents
involved in the mediation session. This allows the mediator to
identify over-constrained subproblems and make suggestions
to eliminate such conditions. In addition, the mediator can
perform a localized arc-consistency check, which potentially
allows large parts of the search space to be eliminated without
having to go through an number of trial and error steps.
Together with the fact that regions of mediation overlap,
the agents rapidly converge on solutions that are in most
cases good enough and fast enough. Overall, the protocol has
many characteristics in common with distributed breakout [8],
particularly its distributed hill-climbing nature and the ability
to exploit parallelism by having multiple mediated sessions
occur simultaneously.

In the remaining sections of this article, we introduce
the distributed monitoring and tracking application which
motivated the development of our protocol. Next, we de-
scribe the Scalable Protocol for Anytime Mediation (SPAM),
a distributed, cooperative mediation-based protocol that was
developed and has been tested on actual sensor hardware. In
section IV, we will introduce Farm, a distributed simulation
environment used to test SPAM, and present and discuss the
results of testing SPAM within that simulator. The last section
of the article will present conclusions for this work.

II. DOMAIN

The resource allocation problem that motivated this work
requires an ef cient allocation of distributed sensing resources
to the task of tracking targets in an environment. In this prob-
lem, multiple sensor platforms are distributed with varying
orientations in a real-time environment [9]. Each platform has
three distinct radar-based sensors, each with a 120 degree
viewable arc, which are capable of taking amplitude (measur-
ing distance from the platform) and/or frequency (measuring
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the relative velocity of the target) measurements. In order to
track a target, and therefore obtain utility, at least three of
the sensor platforms must take a coordinated measurement
of the target, which are then fused to triangulate the target’s
position. Increasing the number, frequency, and/or relative
synchronization of the measurements yields better overall
quality in estimating the target’s location and provides a higher
quality solution. The sensor platforms are restricted to only
taking measurements from one sensor head at a time with
each measurement taking about 500 milliseconds. These key
restrictions form the basis of the resource allocation problem.

Each of the sensor platforms is controlled by a single agent
which may take one or more organizational roles, in addition
to managing its local sensor resources. Each of the agents in
the system maintains a high degree of local autonomy, being
able to make trade-off decisions about competing tasks using
the SRTA agent architecture [10].

One notable role that an agent may take on is that of track
manager. As a track manager, the agent becomes responsible
for determining which sensor platforms and which sensor
heads are needed both now and in the future for tracking a
single target. Track managers also act to fuse the measure-
ments taken from the individual sensor platforms into a single
location. Because of this, track managers are the focal point
of any activities that take place as part of resolving resource
contention.

Dynamics are introduced into the problem as a result of
target movement. During the course of a run, targets contin-
uously enter and leave the viewable area of different sensors,
which then require track managers to continuously evaluate
and revise their resource requirements. This, in turn, changes
the underlying structure of the actual allocation problem. In
addition, these dynamics drive the need for real-time problem
solving, because a particular problem structure only holds for
a limited amount of time.

Resource contention is introduced when more than one
target enters the viewable range of the same sensor platform.
Because of the time it takes to perform a measurement,
combined with the fact that each sensor can take only one
measurement at a time, track managers must come to an
agreement over how to share sensor resources, without causing
any targets to be lost. This local agreement can have profound
global implications. For example, what if as part of its local
agreement, a track manager relinquishes control of a sensor
platform and takes another instead? This may introduce con-
tention with another track manager already using that sensor,
who may then have to request alternate sensor resources to
make up for the new de cienc y.

A. The Resource Allocation Problem

Generally speaking, we say that a resource allocation prob-
lem is the problem of assigning a (usually limited) number
of resources to a set of tasks. Each of the tasks may have
different resource requirements, and may have the potential
for varying utility depending on which resources they use.
The goal is to maximize the global utility of the assignment,
choosing the right options for the tasks and assigning the
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Fig. 1. Utility of taking a single, coordinated measurement from a set of
sensors.

correct resources to them. More formally, a resource allocation
problem is comprised of:

• a set of tasks, T = {t1, · · · , tn}
• a set of resources R = {r1,1, · · · , rj,k} where j is the

number of resources and k is the planning horizon for
the resource.

• a set of utility functions each associated with one of the
tasks U = {U1, · · · , Un|Ui : 2R 7→ <}

The goal of the problem is to come up with an allocation
A = {a1, · · · , an|ai ∈ 2R} such that the following conditions
are met:

1)
∑n

i=1 Ui(ai) is maximized.
2)

⋂n
i=1 ai = ∅.

The notation 2R is used to indicate the power-set of the
resources. Because the resource requirements may change over
time, or a particular pattern of resource usage may be needed
to obtain utility for a task, resources are broken down on
both the resource and time dimensions, hence the need for
a planning horizon. Increasing the number of resources or the
planning horizon can have a signi cant effect on the overall
complexity of the allocation problem, which is known to be
NP-complete.

The  rst condition above basically makes this problem an
optimization problem and can be viewed as a soft constraint
on the solution. The second condition is a hard constraint
since we know that a single resource cannot be applied to
two tasks simultaneously. As we will discuss later, we may
not always strictly adhere to the second condition using high
level distributed search. In fact, we rely on the agents within
the system to always ensure this condition is satis ed during
times when the SPAM protocol has not.

According to this problem formulation, each task has its
own utility function and the utility of assigning a set resources
to a task is strictly dependent on that individual function. In
fact, in dynamic domains, these function may change over
time which alters the underlying relationships between tasks.
What this also means is that due to the sharing of resources,
increasing the utility of a particular task may not increase the
global utility. We make no assumptions in this paper about
task independence.

The distributed version of the resource allocation problem,
which is the focus of this paper, has each task assigned to a
single agent. However, in general an agent may take on more
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than one task.

B. Tracking as Resource Allocation

Modeling the target tracking domain as a resource allocation
problem is fairly straightforward. Each of the targets in the
environment can be considered a task, which is assigned to a
track manager. The sensors are the resources and the job of
the track managers is to obtain enough sensing time from the
correct sensors to track their targets.

At any given time, each of the targets is within the viewable
range of some subset of the sensors. That means that as
the targets move from the viewable range of some sensors
to others, the utility function associated with each of the
tasks change. In addition, tracking involves coordinating mea-
surements from three or more sensors which are then fused
together to form an estimated position of the target. Increasing
the number of sensors improves the quality of an estimate by
the function given in  gure 1 which is based on the RMS
minimization method used to triangulate the targets. Increasing
the frequency of the triangulation yields a linear increase in
the overall quality of the track i.e. two measurements during
a given period is twice as good as one.

Because targets are often in the viewable range of a sensor
for an extended period of time, planning within our system
is periodic. This simply means that the sensors continuously
repeat their assigned schedules until a change is made. We
often refer to the planning horizon (corresponds to k) as a
period and an individual element within the period as a slot.

If we say that M i
s is the set of good sensors measurements

(can see the target) leading to the positional estimate in a
single slot s for a task i, then the utility function for that task
during a speci c period is:

Ui(ai) =

k
∑

s=1

Util(M i
s)

which basically says that the utility of a task for a speci c
period is the sum of the slot utilities for the slots within the
period.

The special nature of the utility functions in the tracking
domain actually allow us to consider a much smaller subset
of the possible allocations for a given task. In fact, track
managers within our system use a simpli ed set of objective
levels de ned by their utility functions to assign resources
to their targets. Each objective level is expressed as a cross
product Dm × Ds denoting the number of resources from
their acceptable set, desired for a number of slots in planning
horizon. For example, a track manager may wish to have three
sensors for two slots, which is denoted 3 × 2. Although the
number of slots in a period is variable, for this domain, we
typically set it to match the number of sensor heads on each
platform, which is three.

There are essentially two bene ts to using this abstract
approach to resource scheduling. First, this representation
vastly reduces the search space by discretizing time into slots
and aligning the slots between the agents (the agents are time
synchronized using Network Time Protocol (NTP)). It is easy
for a manager to know that its measurements are coordinated

if it has scheduled all of them during slot 1 and it knows
that each of the sensors executes methods in slot 1 at about
the same time. Second, by working abstractly, managers leave
the details of the actual implementation of the period-based
schedule to the agents themselves. This leaves the individual
agents quite a bit of  e xibility in how they internally manage
competing tasks.

Note that if a target is ignored (i.e. not being triangulated at
all during a full period), we penalize ourselves by subtracting
two from the social utility. This penalty approximates the
expected gain the agents would obtain by starving one of the
track managers which makes the allocations a bit more “fair”.

III. PROTOCOL

The Scalable Protocol for Anytime Mediation (SPAM) is
built around the principle of good enough, fast enough. As
such, the protocol is actually divided into two major stages.
As the protocol transitions from the  rst stage to the second,
the agent acting as the track manager gains more context
information and is, therefore, able to improve the quality of
its overall decision. In addition, to allow stage 2 time to
complete, without loosing all quality in the interim, stage 1
of the protocol always ensures that at least some solution has
been obtained. So, at any time after the completion of stage
1, the track manager can choose to stop the protocol and is
ensured to have a solution, albeit not necessarily a good one.

The SPAM protocol is activated whenever a local change
in the resources is needed or if a manager detects a change in
the level of contention within one of the resources it’s using.
Detecting a change in the resource needs is done by monitoring
the location of the target as it moves within the sensor  eld.
Track managers constantly evaluate each of the sensors based
 rst, on the ability of the sensor to see their target and second,
on the expected value of the raw data returned by the sensor.
This can be most easily understood as a change to the utility
function used for the track. Whenever a target moves out of
the view of one of the sensors currently being used to track it,
into the view of a new sensor, or if a sensor currently not being
utilized becomes more valuable than a sensor being used, the
manager starts a SPAM session.

Whenever SPAM is activated for this reason, managers set
their objective level to the highest possible value which ensures
the hill-climbing nature of the algorithm. To understand this
point, consider the following example:

Let’s say that a new resource were added to the possible
resources that could be used by manager T1 to track its target.
Let’s also say that another manager, T2, who has more than
enough available resources to itself, was using that resource.
If T1 starts SPAM at a low objective level, it may  nd a
solution that is con ict-free, but will never realize that it
could have gotten a better solution where T2 just gives up
the entire con icted resource. From a PCSP perspective this
just means that whenever the structure of a CSP changes, the
PCSP algorithm should reset its initial bound and attempt to
satisfy all of the constraints before beginning relaxation.

The second reason for starting a SPAM session is when a
manager recognizes a change in the level of contention within
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one of the sensors currently being used to track its target.
This differs considerably from a resource change. Here the
manager is recognizing that there is a change in the utility
being obtained or could potentially be obtained for its target.
The utility function itself has not been changed, only the
interactions between it and some other function within another
manager. Track managers detect these changes by monitoring
the resource schedules of the sensors. To facilitate this process,
sensors inform the managers that are utilizing them about the
state of their resource schedule whenever a change occurs. It
is certainly conceivable and, in fact likely, for two managers
to detect changes in contention at the same time.

There are actually two separate cases here. When a manager
recognizes a previously unknown con ict (i.e. a new restric-
tion), it is most likely caused by another manager choosing
an assignment that uses the resources because it either didn’t
know it was being used, or was forced to as a result of
a mediation. In other words, this case most often occurs
when there is a multi-linked problem within the environment.
When managers recognize this case, they do not change their
objective level before starting SPAM. The reason for this is
easy to understand after considering an example. Let’s say you
have three managers, T1, T2, and T3. T1 has a con ict with
T2, and T2 is sharing resources with T3, but is not in con ict.
As a result of a mediation between T1 and T2 their con ict
is solved, but it creates a con ict between T2 and T3. When
T2 recognizes this problem, if it reset its objective level, the
problem becomes harder to solve because it may reintroduce
con ict with T1 as well as increasing the con ict with T3.

The other type of change occurs when there is a relaxation
of contention on a resource. Again, managers recognize this
type of change by monitoring the resource schedules of the
sensors they are using. Whenever a manager realizes that
it can improve its local utility (increase its objective level)
without creating new con icts, it sets its objective level to
that new increased value, and starts SPAM. As you will see,
when SPAM executes, it will make a simple local change to
its assignment to take advantage of the additional resources
because it can  nd a local solution that is con ict free.

A. Stage 1

Stage 1 of SPAM (see  gure 2) serves three primary func-
tions. The  rst is to  nd a suitable solution within the context
of the information that the protocol has when it starts up.
Like the Asynchronous Weak Commitment (AWC) protocol
[11], each of the agents tries to  nd a resource assignment
that is based solely on their incomplete or inconsistent view
of the current resource schedules from the sensors. Resource
assignments derived at this level must meet two criteria. First,
they must  nd at the objective level that was set at the startup
of SPAM. This ensures the continued hill-climbing nature of
the search. Second, the resource assignment cannot create a
con ict with another track manager. This criteria ensures that
the overall effect of the assignment is not globally negative. If
an assignment is found that adheres to these restrictions, then
no further work is needed and the protocol terminates at the
end of stage 1.

No
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schedules and current

Yes

Yes

Choose the solution
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Fig. 2. Stage 1 of the SPAM protocol.

We should mention that a trade-off exists between com-
munication overhead/solution speed and utility based on the
selection of the objective level that was set at the startup
of the protocol. If each of the managers chooses to use
every available resource (sensors able to see their target), the
possibility for contention over resources greatly increases in
the environment, thereby causing the execution of stage 2
to occur more frequently. However, if the agents decide to
start with at a lower objective level (and correspondingly less
utility), the social utility may suffer unnecessarily.

To take advantage of this trade-off, stage 1 was designed
with a feature, called utility concessioning. The key idea
behind utility concessioning is that often, small changes in
a manager’s local utility can both remove all of the con icts
on its resource assignment (thus improving global utility) and
prevent it from having to wait for a mediation session to
 nish. In SPAM, we have a parameter, called the concession
rate, which de nes how much of the local solution quality
a track manager is willing to concede to  nd a violation-free
solution, in an attempt to avoid the potentially expensive stage
2. The rate is de ned as a percentage of the manager’s current
utility, so as the manager’s utility drops, the amount they are
willing to concede drops as well. That means that in critically
constrained tracking environments, the managers attempt to
mediate more frequently preventing unnecessary loss of utility.

To demonstrate the effects of the concession rate on the
SPAM protocol, we conducted a series of tests that varied the
concession rate and the number of targets within a  x ed 20
sensor environment. So, as the number of targets increases, the
resource contention over the sensors increases as well. Each
data point represents the average over 50 runs where both the
targets and sensors are placed in the environment at a  x ed,
random location then the SPAM protocol is run until the agents
reach a solution. A total of 4400 test runs were conducted to
collect this data.
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Fig. 3. Results of experimentation with the utility concessioning used in Stage 1 of the SPAM protocol.

The results of these experiments can be seen in  gure 3. As
you can see from the graphs, the local concession rate has a
profound effect on the overall systems utility, the number of
targets being tracked, the convergence time, and the number of
messages. For most scenarios a high concession rate leads to
relatively high utility while saving vast amounts of communi-
cation and computation. For example, for 9 targets, graph 3(a)
shows that the utility is not dramatically effected by increasing
the concession rate, but according to graph 3(d), increasing
the rate considerably improves the convergence time for the
protocol. The effects of loosing local utility become apparent
at higher concession rates though. The dramatic drop-off that
occurs at a rate of 0.8 is caused by agents conceding all of
their local utility in order to become con ict free. Essentially,
the agents begin to ignore their targets by conceding all of
their local utility in order to avoid having to mediate.

The second function of stage 1 is to ensure that some degree
of utility is obtained as soon as possible whenever the protocol
is started due to a resource requirement change. This solution,
although not con ict free, has the ability to obtain utility while
the manager tries to get a better solution by going into stage 2.
Con icts that are unresolved during this period of time are left
to the individual sensor agents to handle. Sensor agents can
use one of a number of techniques, including slot boundary
shifting, less expensive measurement types, or task rotation, in
order to solve such con icts. To the track manager, whether
or not they get a measurement from a con icted sensors is
probabilistically random.

The third function of stage 1 is to provide the protocol with
anytime characteristics. Because a solution is always derived
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Fig. 4. Stage 2 of the SPAM protocol.

and applied during stage 1, managers don’t necessarily have
to enter stage 2. They can stop the process at the end of
stage 1 and accept the results that they have achieved. This is
often done if a target’s movement causes the resource needs to
change faster than the expected time it would take to complete
stage 2. The expected time to complete stage 2 is computed
based on both previous experience and the current estimated
communication speeds for the track managers that would be
in the mediation session.

30



IEEE TRANSACTIONS ON SYSTEMS, MAN , AND CYBERNETICS, PART C

B. Stage 2

Stage 2 is the heart of the SPAM protocol (See  gure 4).
Stage 2 attempts to resolve resource contention by elevat-
ing the discussion to the track managers that are in direct
con ict. To do this, one of the track managers takes the
role of the mediator for the local con ict (note that multiple
mediation sessions can occur in parallel in the environment).
As the mediator, it becomes responsible for gathering all
of the information needed to generate alternative solutions,
generating these solutions which may involve changes to the
objective levels of the managers involved, and  nally choosing
a solution to apply to the problem. Because these solutions are
generated without full global information, however, the  nal
solution may lead to newly introduced non-local con ict. If
this occurs, another track managers can choose to take over
the role of mediator in order to correct these newly introduced
con icts if they have the time. So, what started out as a new
target or resource requirement change, may lead to a number of
mediation sessions propagating across the problem landscape.

Looking at this from a more formal perspective. If the set
of resources that are usable for a single task ti is de ned as

R(ti) = {ru,v |ru,v ∈ R ∧ ∃a(Ui(a ∪ ru,v) > Ui(a)))}

then the set of acceptable resource assignments for a single
task ti is

D(ti) = {a|a ∈ 2R(ti) ∧ Ui(a) > 0}

and the neighbor tasks to a mediator m are

Nm = {ti|ti ∈ T ∧ R(tm) ∩ R(ti) 6= ∅}

then the problem that a mediating manager m is working on
is

• a set of tasks, Tm = {tm ∪ Nm}
• a set of resources Rm = {ru,v|ru,v ∈ (

⋃

∀ti∈Nm
R(ti))∩

R(tm)}
• a set of utility functions Û = {Ûi|ti ∈ Tm}

The goal of this subproblem is the same as the goal of
the global problem. The notation Ûi is used to indicate an
approximation function to the actual Ui for each of the man-
agers. Also note that Rm ⊆

⋃

∀ti∈Nm
R(ti). What this means

is that the view of the mediating manager is limited to only the
constraints that arise from the sharing of a resource with the
mediator. These conditions, when combined together, indicate
that the estimated utility of a solution to the subproblem
is always either equal to or an over-approximation to the
actual utility obtained socially. This is simply a by-product
of performing a localized search. The mediator never knows
if the assignments it proposes at a given utility value will
cause con ict outside of its view, which is why we allow the
managers to propagate. You should also note that the set Tm

may not strictly include every one of the mediator’s neighbors.
Some track managers may not be using be a resource from
R(tm) even though that resource belongs to their R(ti) and
therefore cannot be seen by the mediator (i.e. the mediator is
unaware of their relationship).

The best way to explain how stage 2 operates is through an
example. Consider  gure 5. This  gure depicts a commonly

Track Manager T1

S1, S2, S3, S4

Objective: 4X3 Objective: 4X3

S5, S6, S7, S8

Track Manager T3

Objective: 4X3

Track Manager T2

S3, S4, S5, S6

Fig. 5. Example of a common contention for resources. Track manager T2
has just been assigned a target and contention is created for sensors S3, S4,
S5 and S6.

encountered form of contention. Here, track manager T2 has
just been assigned a target. The target is located between two
existing targets that are being tracked by track managers T1
and T3. This creates contention for sensors S3, S4, S5, and
S6.

Following the protocol for the example in  gure 5, track
manager T2, as the originator of the con ict, takes on the role
of mediator. It begins the solution generation phase by re-
questing meta-level information from all of the track managers
that are involved in the resource con ict. The information that
is returned includes the current objective level that the track
manager is using, the number of sensors which could possibly
track the target, the names of the sensors that are in direct
con ict with the mediator, and any additional con icts that the
manager has. To continue our example, T2 sends a request for
information to T1 and T3. T1 and T3 both return that they have
4 sensors that can track their targets, the list of sensors that are
in direct con ict (i.e T1(S3, S4), T3(S5, S6)) their objective
level (4×3 for both of them) and that they have no additional
con icts outside of the immediate one being considered. Note
that sensors S1, S2, S7, and S8 are not in direct con ict and
therefore are not mentioned by T1 and T3.

Using this information, T2 is able to generate D(ti) for
each of the tasks in the set Tm for the objective levels that are
passed in as part of the meta-level information(see section III-
D). With the full set of D(ti)’s, it’s fairly easy to generate all
possible satisfying assignments A with each element being a
particular Am = {ai|ti ∈ Tm ∧ ai ∈ D(ti)} s.t. the condition
⋂

∀ai∈Am
ai = ∅ is met.

As you can see in  gure 4, T2 enters a loop that involves
attempting to generate these sets followed by lowering one
of the track manager’s objective level if A = ∅ given the
current objective levels of each of the track managers. One
of the principle questions that we are currently investigating
is how to choose the track manager that gets its objective
level lowered when A is empty. Right now, this is done by
choosing the track manager with the highest current objective
level, which cannot support its demands with resources outside
of the set Rm and lowering them. This has the overall effect of
balancing the objective levels of the track managers involved
in the session. Whenever two or more managers have the same
highest objective level, we choose to lower the objective level
of the manager with the least amount of external con ict. By
doing this, it is our belief, that track managers with more
external con ict will maintain higher objective levels, which
leaves them more leverage to use in subsequent sessions as a
result of propagation.

You should note that although this has similarities to the
techniques used in PCSPs, this differs in that the actual
CSP problem changes as the objective levels are changed.
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PCSP techniques, such as [5]–[7] choose a subset of the
constraints to satisfy, we actually change the structure of the
constraints, removing them by lowering the objective levels,
until the problem becomes satis able. We also differ from
the Distributed Constraint Optimization (DCOP) [12], [13]
work in that although DCOPs have a utility function over the
possible assignments to a problem, methods for solving them
do not change the underlying CSP to ensure satis ability .

The solution generation loop is terminated under one of
two conditions. First, if given the current objective levels for
each of the track mangers, the set A 6= ∅, the session enters
the solution evaluation phase. Second, we cannot  nd a track
manager to lower without D(ti) = ∅ and A = ∅. Under this
condition, the session is terminated and the mediator takes a
partial solution at the lowest objective level that minimizes the
resulting con ict, conceding that it cannot  nd a full solution.

Continuing our example, T2  rst lowers the objective level
of T1 (choosing T1 at random because they all have equal
external con ict). No full solutions are possible under the new
of set objective levels, so the loop continues. It continues, in
fact, until each of the track managers has an objective level
of 3 × 2 at which time T2 is able generate a set of 216 (the
number of elements in A) solutions to the problem.

During the solution evaluation phase, the mediator sends
each of the track managers a set:

di = {a|a ∈ D(ti) ∧ ∃Am ∈ A(a ∈ Am)}

What should be clear is that each of the di is arc-consistent
for every constraint between elements in the set Rm. What
that means is that for the mediator’s resources, all constraints
are satis ed.

The purpose of this message is actually two-fold. The  rst
purpose is to obtain information about the effect of imposing
a particular solution. The second purpose is to obtain a lock
from the con icting manager. This lock prevents the manager
from changing its value while it is in a session which allows
multiple sessions to occur simultaneously in the environment.
If the manager is already locked, it informs the mediator who
simply drops them from the session. This, of course, means
that the overall session may not end with an entirely con ict-
free solution, but in most cases allows the mediator to correct
some of the con icts while it waits for the lock to clear.

Each of the managers that remains in the session, using its
set di and a revised objective level, determines which, if any,
of the solutions are satis able given the local agent view and
which is best given the actual Ui. In our example, T2 sends 24
alternatives to T1, 24 alternatives to itself, and 24 alternatives
to T3. T1 is only sent 24 alternatives because, only 24 of its
elements from the set D(t1) exist in the set A. This means
that most of the elements from D(t1) do not appear in d1

because they were not consistent with at least one combination
of elements from D(t2) and D(t3).

In our current implementation, each of the track managers
orders alternatives from best to worst based on the number of
new con icts that will be introduced and the desirability of
the particular resources present in the alternative. This has a
min-con ict heuristic [14] like  a vor and is an integral part
of the hill-climbing nature of the algorithm. Currently, we are
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Fig. 6. A solution derived by SPAM to the problem in  gure 5. The table
on the left is before track manager T2 mediates with T1 and T3. Notice that
a number of slots have two or more tasks scheduled. The table on the right
is the result of stage 2 which is con ict-free.

looking at a number of alternative techniques for providing
local preference information to the mediator including simply
returning utility values for each solution and assigning solu-
tions to a  nite set of equivalence classes.

Once the mediator has the orderings from the track man-
agers, it chooses a particular Am to apply to the problem.
This is done using a dynamic priority method based on the
number of constraints each of the managers has external to
the mediation, a form of meta-level information. The basic
notion is similar to the priority order changes in AWC [11];
try to  nd the task which is most heavily constrained and
elevate it in the orders. Our impression is that this helps
stem the propagation because it leaves the most constrained
tasks with the best choices. This allows those managers to
maintain violation free solutions if they exist in the alternatives
presented to them. Let’s say that the priority ordering for the
tasks is (th, th−1, · · · , t0). The mediator iteratively prunes the
set A by creating a set Ath

= {Am|Am ∈ A ∧ ∀Ai ∈
A(priorityh(au ∈ Am) ≥ priorityh(av ∈ Ai))}. This newly
created list is pruned in the same way for each of the managers
until |A| = 1.

In our example, T2 collects the ordering from T1, T2,
and T3. T3 is given  rst choice. By its ordering it ranked
alternative 0 the highest. This restricts the choice for T2 to
alternatives 0, 1, 2, and 3. T2 ranked 0 highest from this set
of alternatives, restricting T1’s choice to its 0th, 1st, and 2nd
alternatives. It turns out that T1 likes its 0th solution the best
so the  nal solution is composed of T3’s alternative 0, T2’s
alternative 0, and T1’s alternative 0.

The last phase of the protocol is the solution implementation
phase. Here, the mediator simply informs each of the track
managers of its  nal choice. Each of the track managers then
implements the  nal solution. At this point, each of the track
managers is free to propagate and mediate if it chooses.

Figure 6 shows the starting and ending state of the resource
schedules for the example problem. The columns represent
the slots within the periodic schedules of the sensors. The
rows represent the sensors. Notice that before T2 mediates,
sensor S4 has two managers, T1 and T2, scheduled during
every slot. After the mediation ends, all of the con ict has
been removed and each manager obtains a 3×2 con guration
with T1 alternating the use of S3 and S4 in slot 2 and 3.
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C. Oscillation

Because the SPAM protocol operates in a local manner, a
condition known as oscillation can occur. Say that, from our
previous example, track manager T1 originated a mediation
with track manager T2. In addition assume that T2 had pre-
viously resolved a con ict with manager T3, that terminated
with neither T2 or T3 having unresolved con ict. Now when
T1 mediates with T2, T1 in the end gets a locally uncon icted
solution, but in order for that to occur, T2 con icts with T3. It
is possible that when T2 propagates, that the original con ict
between T1 and T2 is reintroduced, leading to an oscillation.

There are actually a number of ways to prevent this from
happening when the problem being worked on is static. For
example, in both [11], [15], the authors use global prioritiza-
tion, static in one, dynamic in the other, to prevent loops in the
constraint network, and also maintain nogood lists to ensure
a complete search.

We explored a method in which each track manager main-
tains a history of the sensor schedules that were being medi-
ated over whenever a negotiation terminated. By doing this,
managers were able determine if they have previously been in
a state which caused them to propagate in the past. To stop the
oscillation, the propagating manager lowered its objective level
to force itself to explore different areas of the solution space. It
should be noted that in certain cases oscillation was incorrectly
detected using this technique, which resulted in having the
track manager unnecessarily lower its objective level.

This technique is similar to that applied in [3], where
a nogood is annotated with the state of the agent storing
it. Unfortunately, none of these techniques work well when
complex interrelationships exist and are dynamically chang-
ing. Because the problem changes continuously, previously
explored parts of the search space need to be constantly
revisited to ensure that an invalid solution has not recently
become valid. Currently, we allow the agents to enter potential
oscillation, maintaining no prior state other than objective
levels from session to session and rely on the environment
to break oscillations through the movement of the targets,
asynchrony of the communications, timeouts, etc.

D. Generating Solutions

Generating the set A for the domain described earlier in-
volves taking the information that was provided through com-
munications with the con icting track managers and assuming
that the sensors that are in the set

⋃

∀ti∈Nm
D(ti) − R(tm)

are freely available. In addition, because the track manager
that is generating full solutions only knows about the sensors
which are in direct con ict, it only creates and poses solutions
for those sensors. That means that ∀a a ∈ di → a ∈ Rm.
The formula below illustrates the basic mechanism that task
manager’s use to generate task alternatives. Here, k is the
number of slots that are available in the planning horizon, Ds

is the number of slots that are desired based on the objective
level for the track manager, |R(ti)| is the number of sensors
available to track the target (those that can see it), Dm is the
number of sensors desired in the objective function, and  nally

Ci = |R(ti) ∩ R(tm)| is the number of sensors under direct
consideration because they are con icting.

|D(ti)| =

(

k

Ds

)





min(Ci,Dm)
∑

u=max(0,Dm−|R(ti)|+Ci)

(

Ci

u

)





Ds

As can be seen by this formula, every combination of slots
that meets the objective level is created, and for each of the
slots, every combination of the con icted sensors is generated
such that the track manager has the capability of meeting
its objective level using the sensors that are available to it.
For instance, let’s say that a track manager has four sensors
S1, S2, S3, and S4 available to it. The track manager has
a current objective level of 3 × 2 and sensors S2 and S3
are under con ict. The generation process would create the
3 combinations of slot possibilities and then for each possible
slot, it would generate the combination of sensors such that
three sensors could be obtained. The only possible sensor
combinations in this scenario would be that the track manager
gets either S2 or S3 (assuming that the manager will take the
other two available sensors) or it gets S2 and S3 (assuming
it only takes one of the other two). Therefore, a total of 27
possible solutions would be generated.

It is interesting to note that we use this same formula for
alternative solutions in stage 1 of the protocol. This special
case generation is actually done by simply setting Ci =
|R(ti)|. In this case, the formula above reduces to:

|D(ti)| =

(

k

Ds

) (

Ci

Dm

)Ds

We can also generate partial solutions when there are
a number of pre-existing constraints on the use of certain
slot/sensor combinations. Simply by calculating the number
of available sensors for each of the slots, and using this as
a basis for determining which slots can still be used, we can
reduce the number of possible solutions considerably.

Using the ability to impose constraints on the alternatives
generated for a given track manager allows us to generate full
solutions for the track managers in stage 2. By recursively
going through the track managers using the results from earlier
track managers as constraints for lower precedence ones, we
can do a full search of the localized subproblem.

This can view this as a tree-based search where the top level
of the tree is the set of alternatives for one track manager.
Each of the nodes at this level may or may not have a number
of children which are the alternatives available to the second
track manager and so on. Only branches of the tree that have
a depth equal to one less than the number of track managers
are added to the set A. If there are no branches that meet this
criteria, then the problem is considered over-constrained.

E. Handling Dynamics

By far one of the most interesting characteristics of the
SPAM protocol is its ability to operate in environments that
are highly dynamic. The SPAM protocol employs a number of
techniques to deal with the effects of environmental dynamics
both from a global perspective and a local perspective. One
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of the most useful techniques that SPAM employs is the
localization of mediation sessions. By limiting the context of
the problem solving to only its immediate neighbors, agents
can rapidly generate solutions to considerably smaller prob-
lems than would be faced by centralizing the entire problem,
computing a solution, and later redistributing an answer. This
technique alone would be no better than a one look-ahead
greedy method however, if it weren’t for the use of overlapping
context in the problem solving and the ability for managers to
propagate the con icts. Globally, this leads to a great deal of
parallelism in the search although it may lead to suboptimal
solutions.

Within an individual session, SPAM handles dynamics by
having both a multi-stage and multi-step mediation process.
By breaking apart the protocol into 2 stages, SPAM can stop
processing after stage 1 if it either predicts that it will or
actually does run out of time during stage 2. In addition, within
stage 1, an agent can concede some of its local utility in order
to avoid engaging in time consuming mediation sessions and
try to  nd solutions that only require localized changes to the
resource schedules.

The mediation session itself is broken into several distinct
phases. Mediators can place deadlines on each of these phases
and at any time can drop another agent for the session or
terminate it all together. Although not currently implemented,
it is easy to see that a scheduler could be used to set these
deadlines based on the expected duration of a resource need,
the expected communications delay with individual agents,
etc. In fact, mediators can even place deadlines on their
internal searches. The algorithm used by the agents to generate
solutions can be terminated at any time and will return the set
of the solutions generated up to that point.

Lastly, the mediation itself is limited to the sensors that the
mediator wishes to use. That means that track managers within
the session are only given schedules for the sensors that are
desired by the mediator and have considerable  e xibility in the
actual implementation of their local solutions. For example,
let’s say that a mediator T1 concludes a session with another
manager, T2 which involves a single sensor S1. The solution
T1 has generated has T2 only using S1 during the third slot
of its schedule. T2 is free to implement any local solution,
as long as it doesn’t use S1 during its  rst or second slot. In
fact, if T2’s target moves outside of the view of S1 during the
session, it can decide not to use S1 at all.

IV. TESTING

SPAM was implemented and successfully tested in the envi-
ronment described in section II. However, do to the variability
created by using actual hardware, properly testing SPAM was
problematic. Thus, to more systematically and rigorously eval-
uate the SPAM protocol, we implemented a model of the do-
main in a simulation environment called Farm [16]. Farm is a
component-based, distributed simulation environment written
in Java where individual components have responsibility for
particular encapsulated aspects of the simulation. For example,
they may consist of agent clusters, visualization or analysis
tools, environmental or scenario drivers, or provide some

other utility or autonomous functionality. These components
or agent clusters may be distributed across multiple servers to
exploit parallelism, avoid memory bottlenecks, or utilize local
resources.

The actual model used for testing SPAM has both sensor
and track manager agents. Each of the sensor agents represents
a single sensor which was placed in a  x ed location within the
world. These sensors agents are very simple, and only maintain
a local schedule, which is not actually performed in any
tangible way. A  x ed number of targets is introduced into the
world, and one track manager per target is created to manage
the resources needed to track that target. The targets can move
through the environment with random trajectories that have
a random, bounded speed. As the simulation progresses, the
simulator continuously updates the position of the targets, and
for each target calculates the set of sensors that are able to
track it. The track managers can obtain their candidate sensor
lists from the simulation environment and follow the SPAM
protocol to allocate resources.

We ran two test series, one to test the effectiveness of our
approach and the other to test its scalability.

A. Effectiveness

For the  rst test series, we wanted to determine the effective-
ness and runtime characteristics of the protocol given different
levels of resource contention. In this test series, we randomly
placed 20 sensors within the environment and between 2 and
9 concurrent targets. Each of the targets maintained a static
location throughout the run to allow the protocol to reach
quiescence for the sake of measuring the convergence time.

For comparison purposes, we also implemented functions
to compute solutions that:

1) Would be obtained by greedy agents.
2) Have the optimal utility.
3) Track the optimal number of targets.

Greedy agents each request all of the available (can see their
target) resources to track their targets. These requests may
potentially overriding each other in the sensors’ schedules
leading to poor performance in areas of high contention.

The optimal utility algorithm computes the maximal set of
objective levels that is satis able in the environment. This is
done by having the algorithm perform a complete search of the
space of allowable objective levels, where each one is checked
for satis ability using a modi ed version of the complete
search algorithm presented in section III-D. To make the
search go faster, we prevent it from checking satis ability on
solutions that have utilities less than the best already obtained
(i.e. Branch and Bound [5]), and do a simple arc-consistency
check (using the pigeon hole principle) to prune obviously
over-constrained problems.

The algorithm used for  nding the optimal number of tracks
determines the largest number of targets that can be tracked
given the available resources. For clarity, a target is considered
tracked if one coordinated triangulation occurs from three or
more sensors during a given period. To obtain the optimal
number of tracks, a search similar to the optimal utility is
done. In this search, the only objective levels that need to be
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Fig. 7. Results of 20 sensor and varying target experiments comparing Greedy, SPAM and optimal allocations.

checked are either a minimal tracking (i.e. 3×1) or no tracking
at all (0 × 0) making this search very fast.

We compared greedy and SPAM based on their achieved
utility and the number of targets they tracked as a percentage
of the optimal values over 20 test runs. A total of 180 tests
were conducted for this series.

Figures 7(a), 7(b), 7(c), and 7(d) summarize the results
of this series. As you can see from the graphs, SPAM does
quite well when compared to both greedy and optimal. For
the greedy method, the problem begins to become over-
constrained at around 4 targets. SPAM provide reasonably
good results (over 80% optimal for utility) for all of the
con gurations tested. Two things in particular are interesting
about these results. First, for tracking targets, SPAM performs
nearly 100% optimal. This is caused by the fact that SPAM
is trying to optimize the balance of resources so that as many
targets can be tracked as possible. Figure 7(d) shows another
interesting result. As the problem gets harder SPAM has a
linear increase in the time it takes to converge. This is very
promising, considering the allocation problem is known to
be NP-complete. Unfortunately, we have not yet implemented
other solutions, which could be used to compare this running
time. It should also be noted that the optimal solution took
between a few seconds (for two targets) to several days (for
nine targets) to compute.

Something we were not able to show in the graphs is that
there are cases when the greedy algorithm obtained higher
utility than SPAM, but was ignoring a large number of the
targets in order to achieve it. We think that this may be caused
by not penalizing enough for ignoring targets. It is not clear
what that penalty should be, and initially seems to be strongly

domain dependent.
Lastly, there was at least one case where SPAM entered an

oscillation. The utility obtained during the oscillation varied
only slightly and the number of unresolved global con icts
 uctuated back and forth from 2 to 3. As mentioned earlier,
this is a result of the localization of the search and in a
dynamic environment probably would have been eliminated
due to the targets’ motion.

B. Scalability

For the second simulation series we wanted to investigate
the scalability of the protocol given a  x ed level of contention
and  x ed sensor  eld density. In these experiments a  x ed
ratio of 2.5 sensors per target were used while varying the
number of agents, n, from 100 to 800. This ratio was chosen
because it represents a fairly over-constrained problem since
each track manager needs three sensors to track its target. The
 eld density was  x ed at 4 sensors per point which ensured
overlap of the resources desired by the agents. The width and
height of the environment were calculated as follows:

width =

√

sπr2

4

where s is the number of sensors and r is the sensors
viewable radius (20 feet for these sensors). So, for 700 agents
we would have 500 sensors in an environment of 396ft ×
396ft with 200 targets which all move with a uniformly
random speed between 0 and 2 feet per second. Each of the 20
simulation runs lasted three minutes and were on a different
sensor  eld layout. So, the values reported here are an average
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Fig. 8. Results of scale experiments conducted with a  eld density of 4 sensors per point and resource ratio of 2.5 sensors per target.

over 1 hour of runtime. For comparison purposes, we also ran
the greedy algorithm once again.

One very important thing to note is that the greedy algorithm
is part of the simulation and therefore is given access to the
global state and is not penalized for computation time or
communication delays. This means that it computes a solution
to a static problem at each instant of time. The targets are
stopped while it computes to ensure that the problem state
does not change before it determines its answer. Overall, this
means that the results returned by the greedy algorithm over-
estimates the utility that greedy agents would obtain.

SPAM, on the other hand, must explicitly communicate to
gain information, is explicitly charged for computation time,
works with incomplete and inaccurate information due to the
targets continuous motion, as is not given credit for its solution
until it is actually implemented in the sensor agents. Overall,
the utility values calculated for SPAM are a very accurate
representation of the actual values that would be obtained in
real-time environments.

Figures 8(a), 8(b), 8(c) show the results for this series.
As can be seen, as the number of agents increases linearly,
so does the the utility for SPAM and the greedy algorithm,
which is not entirely surprising. Notice though, that even with
the large advantage that the greedy algorithm is given, SPAM
consistently outperforms it.

The two other interesting results from these experiments
are the percentage of targets tracked and the number of
messages being used by the agents. As the number of targets
increase, the percentage of targets being effectively tracked
remains almost constant and the number of messages being
communicated by each agent per second remains constant as

well. This would suggest that the methods being used by
SPAM to break apart the multi-linking of interdependencies
between the track manager agents is actually very effective.
Independent analysis of the SPAM protocol presented in [17]
veri es these  ndings.

V. CONCLUSION

In this article, we described a distributed, cooperative
mediation-based protocol which was built to solve resource
allocation problems in a soft real-time environment. The
protocol exploits the fact that agents within the environment
are both cooperative and autonomous, and employs a number
of techniques to operate in highly dynamic environments.
Included in these techniques are mapping the resource allo-
cation problem into an optimization problem, applying arc-
consistency techniques to quickly prune the search space,
breaking the protocol into multiple stages and phases to
allow it to make time/quality trade-offs appropriate for current
conditions, and minimizing the effects of long chains of inter-
dependencies by localizing the scope of individual mediations.

As it turn out, the core ideas used in SPAM, particularly
cooperative mediation, work quite well for solving static dis-
tributed problems, including distributed constraint satisfaction
(DCSP) and distributed constraint optimization (DCOP). Our
current work has focused on exploiting the power of this
general technique for solving problems within these areas.
As such, we have developed a complete algorithm, called
asynchronous partial overlay (APO) [18], for DCSPs and
an optimal algorithm, called optimal asynchronous partial
overlay (OptAPO) [19], for DCOPs that are based on the
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concept of cooperative mediation. These algorithm are, to the
best of our knowledge, the fastest known methods for solving
problems of these types.

Unfortunately, even though these algorithms are the fastest
known, they still cannot operate in dynamic environments as
they are unable to cope with rapidly changing conditions. This
fact necessitates the existence of algorithms and techniques
that perform both good enough and fast enough, like SPAM.
The results of this work are encouraging, and although we
consider the problems associated distributed resource alloca-
tion in dynamic environments to be an open research question,
we feel that SPAM is a step in the right direction.
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Abstract

Distributed Constraint Optimization Problems (DCOP)
have, for a long time, been considered an important re-
search area for multi-agent systems because a vast number
of real-world situations can be modeled by them. The goal
of many of the researchers interested in DCOP has been to
find ways to solve them efficiently using fully distributed al-
gorithms which are often based on existing centralized tech-
niques. In this paper, we present an optimal, distributed al-
gorithm called optimal asynchronous partial overlay (Op-
tAPO) for solving DCOPs that is based on a partial cen-
tralization technique called cooperative mediation. The key
ideas used by this algorithm are that agents, when acting as
a mediator, centralize relevant portions of the DCOP, that
these centralized subproblems overlap, and that agents in-
crease the size of their subproblems as the problem solving
unfolds. We present empirical evidence that shows that Op-
tAPO performs better than other known, optimal DCOP
techniques.

1. Introduction

For a number of years now, researchers in distributed
problem solving have struggled with the question of
how to find an optimal assignment to a set of vari-
ables spread over a number of agents which have in-
terdependencies. Out of this work, a number of formu-
lations have arisen to describe these problems includ-
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ratory, or the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

† The first author is a student

ing the distributed partial constraint satisfaction prob-
lem (DPCSP)[2], distributed valued constraint satisfac-
tion problem [5], distributed hierarchical constraint sat-
isfaction problems [3], and the distributed constraint op-
timization problem (DCOP) [10].

A number of powerful distributed algorithms have
been developed that solve these problems either opti-
mally, or close to optimally. For example, Distributed
Depth-first Branch and Bound (DDBB) and Distributed
Iterative Deepening (DID) [10], Anchor and Ascend [6],
Synchronous Branch and Bound (SBB) and Iterative
Distributed Breakout (IDB) [2], Distributed Greedy Re-
pair [5], and the Asynchronous Distributed Optimization
(Adopt) algorithm [8]. Each of these algorithms has, at
their core, two common threads. First, their basic design
originated directly from an associated centralized algo-
rithm and second, they maintain total separation of the
agents’ knowledge during the problem solving process.

In this paper, we present a cooperative, mediation-
based DCOP protocol, called Optimal Asynchronous Par-
tial Overlay (OptAPO), that allows the agents to extend
and overlap the context that they use for making their
local decisions as the problem solving unfolds. When an
agent acts as a mediator, it computes a solution to a
portion of the overall problem and recommends value
changes to the agents involved in the mediation session.
This algorithm, like its DCSP variant APO [7], allows for
rapid, distributed, asynchronous problem solving without
the explosive communications overhead normally associ-
ated with current distributed algorithms. OptAPO rep-
resents a new methodology that simultaneously exploits
the speed of centralized techniques and the ability of dis-
tributed problem solving to identify problem substruc-
ture. In the graph coloring domain, this algorithm per-
forms better, both in terms of communication and com-
putation, than the Adopt algorithm which is currently
the fastest known complete DCOP technique.

In the rest of this paper, we present a formalization of
the DCOP problem. We then present the OptAPO algo-
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procedure initialize
di ← random d ∈ Di;
F ∗

i ← 0;
pi ← sizeof(neighbors);
mi ← active;
mediate← none;
add xi to the good list;
send (init, (xi, pi, di, mi, Di, Ci, pathi,j)) to neighbors;
initList← neighbors;

end initialize;

when received (init, (xj , pj , dj , mj , Dj , Cj , [pathj,i])) do
Add (xj , pj , dj , mj , Dj , constraintsj , path) to agent view;
if xj is a neighbor of some xk ∈ good list do

add xj to the good list;
add all xl ∈ agent view and xl /∈ good list
that can now be connected to the good list;

pi ← sizeof(good list);
end if;
if xj /∈ initList do

send (init, (xi, pi, di, mi, Di, Ci)) to xj ;
else

remove xj from initList;
check agent view;

end do;

Figure 1. TheOptAPOprocedures for initialization

and linking.

rithm and discuss the issues of soundness and optimal-
ity as well as presenting an example of the execution on
a simple problem. Next, we present the results of exten-
sive testing that compares OptAPO with Adopt within
the commonly used graph coloring domain. Lastly, we dis-
cuss some of our conclusions.

2. Distributed Constraint Optimiza-

tion Problem

A Constraint Optimization Problem (COP) consists of
the following:

• a set of n variables V = {x1, . . . , xn}.
• discrete, finite domains for each of the variables D =
{D1, . . . , Dn}.

• a set of cost functions f = {f1, . . . , fm} where each
fi(xi,1, . . . , xi,j) is function fi : Di,1 × · · · × Di,j →
N ∪∞.

The problem is to find an assignment A∗ =
{d1, . . . , dn|di ∈ Di} such that the global cost, called
F , is minimized. Although the algorithm presented will
work for any associative, commutative, monotonic ag-
gregation function defined over a totally ordered set
of values, with min and max elements, in this pa-
per, F is defined as follows

F (A) =
m

∑

i=1

fi(A)

when received (value?, (xj , pj , dj , mj)) do
update agent view with (xj , pj , dj , mj);
check agent view;

end do;

procedure check agent view
if initList 6= ∅ or mediate 6=none do

return;
m′

i ← none;
if Fi > F ∗

i and ∃j (fj < f∗

j ∧ pj < pi) do
m′

i ← active;
else if Fi > F ∗

i

m′

i ← passive;
if m′

i 6= none and ¬∃j(pj > pi ∧mj == active)
if ∃(d′

i ∈ Di) (d′

i ∪ agent view causes Fi == F ∗

i )
and changes are with lower priority neighbors
di ← d′

i;
mi ←none;
send (value?, (xi, pi, di, mi)) to all xj ∈ agent view;

else
do mediate(m′

i);
else if mi 6= m′

i

mi ← m′

i;
send (value?, (xi, pi, di, mi)) to all xj ∈ agent view;

else if mi == none
for ∀xj ∈ agent view ∧ xj /∈ good list do

for ∀xk on the path to xj ∧ xk /∈ agent view do
send (init, (xi, pi, di, mi, Di, constraintsi)) to xk;
add xk to initList;

end do;
end if;

end check agent view;

Figure 2. The procedures for doing local resolution,

updating the agent view and the good list.

In the distributed version of this problem, DCOP, each
agent is assigned one or more variables along with the
functions on their variables. Overall, COP and DCOP
have both been shown to be NP-complete, making some
form of search a necessity.

In this paper, we restrict ourselves to the case where
each agent is assigned a single variable and is given knowl-
edge of its functional relationship with other neighbor-
ing variables. Since each agent is assigned a single vari-
able, we will refer to the agent by the name of the vari-
able it manages. Also, we restrict ourselves to considering
only binary functions which are of the form fi(xi1, xi2). It
should become fairly apparent that our approach can be
extended to handle cases where one or both of these re-
strictions are removed.

Throughout the paper, we use the term neighbors to
refer to agents that appear within a single cost function
or functional relation. The graph formed by representing
the agents as nodes and the functional relationships as
edges is called the relationship graph.
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procedure mediate(m′

i)
preferences← ∅;
counter← 0;
for each xj ∈ good list do

send (evaluate?, (xi, pi, m
′

i)) to xj ;
counter ++;

end do;
mediate← m′

i;
mi ← m′

i;
end mediate;

when receive (wait!, (xj , pj)) do
counter - -;
if counter == 0 do choose solution;

end do;

when receive (evaluate!, (xj , pj , labeled Dj)) do
record (xj , labeled Dj) in preferences;
counter - -;
if counter == 0 do choose solution;

end do;

Figure3.Theprocedures formediating inOptAPO.

3. Optimal APO

3.1. The Algorithm

Figures 1, 2, 3, 4, and 5 present the OptAPO algo-
rithm. The algorithm works by constructing a good list

and maintaining a structure called the agent view. The
agent view holds the names and some information about
the values, domains and functional relationships of agents
in the environment that are linked to the owner of the
agent view. The good list holds the names of the agents
that the owner has identified either a direct or indirect re-
lationship to through one or more functional relations in
the relationship graph.

In order to facilitate the problem solving process, each
agent has a dynamic priority that is based on the size of
their good list. Priorities are used by the agents to de-
cide the order in which one or more agents mediate when
they have a need. Priority ordering is important for two
reasons. First, priorities ensure that the agents with the
most knowledge gets the make the decisions. This im-
proves the efficiency of the algorithm by decreasing the
effects of myopic decision making. Second, priorities im-
prove the effectiveness of the mediation process. Because
lower priority agents expect higher priority agents to me-
diate, they are less likely to be involved in a session when
the mediation request is sent.

3.1.1. Initialization (Figure 1) On startup, the
agents are provided with the value (they pick it ran-
domly if one isn’t assigned) and the functions on their
variable. Initialization proceeds by having each of the
agents send out an “init” message to each of its neigh-

procedure choose solution
select a solution s using a Branch and Bound search that:

1. minimizes the cost for the agents in the good list
2. minimizes the cost for the agents not in the session;

F ′

i ← Fi+ current cost for agents not in the session;
F ′

s ← Fs+ cost for agents not in the session;
if mediate == active and F ′

s ≤ F ′

i do
di ← d′

i;
for each xj ∈ agent view do

if xj ∈ preferences do
if d′

j ∈ s violates an xk and xk /∈ agent view do
send (init, (xi, pi, di, mi, Di, Ci, pathi,k)) to xk;
add xk to initList;

end if;
if mediate == active and F ′

s ≤ F ′

i do
send (accept!, (d′

j , xi, pi, di)) to xj ;
update agent view for xj

else if mediate == active and F ′

s > F ′

i do
send (accept!, (dj , xi, pi, di)) to xj ;

end if;
else if mediate == active do

send (value?, (xi, pi, di, mi)) to xj ;
end if;

end do;
mediate← none;
check agent view;

end choose solution;

Figure 4. The procedure for choosing a solution.

bors. This initialization message includes the variable’s
name (xi), priority(pi), current value(di), domain(Di),
and functional relationships(Ci). Also included in this
message are the variable mi, which indicates the agents
current desire to mediate, and a list of agents that lie be-
tween i and j in the relationship graph. The purpose of
both of these pieces of information will be described be-
low. The array initList records the names of the agents
that initialization messages have been sent to, the rea-
son for which will become immediately apparent.

When an agent receives an initialization message (ei-
ther during the initialization or through a later link re-
quest), it records the information in its agent view and
adds the variable to the good list if it can. An agent is
only added to the good list if it is connected to another
agent already in the list through a functional relation-
ship. This ensures that the graph created by the agents
in the good list always remains connected. The initList

is then checked to see if this message is a link request or
a response to a link request. If an agent is in the initList,
it means that this message is a response, and the agent
is simply removed from the list. If the agent is not in the
initList then it means this is a request, so a response
“init” is generated and sent.

It is important to note that, at times, the agents in
the good list are a subset of the agents contained in the
agent view. This is done to maintain the integrity of the
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when received (evaluate?, (xj , pj , mj)) do
update agent view with (xj , pj , mj);
if (mediate 6= none or ∃k(pk > pj ∧mk == active))

and mj == active do
send (wait!, (xi, pi));

else
if mediate 6= active do

mediate← mj ;
label each d ∈ Di with the names of the agents
and associated costs incurred by setting di ← d;

send (evaluate!, (xi, pi, labeled Di));
end if;

end do;

when received (accept!, (d, xj , pj , dj , mj)) do
di ← d;
mediate← false;
send (value?, (xi, pi, di, mi)) to all xj in agent view;
update agent view with (xj , pj , dj , mj);
check agent view;

end do;

Figure 5. Procedures for receiving a session.

good list and allow links to be bidirectional. To under-
stand this point, consider the case when a single agent
has repeatedly mediated and has extended its local sub-
problem down a long path in the relationship graph. As
it does so, it links with agents that may have a very lim-
ited view and therefore are unaware of their indirect con-
nection to the mediator. In order for the link to be bidi-
rectional, the receiver of the link request has to store the
name of the requester, but cannot add the them to their
good list until a path can be identified.

In order to ensure the optimality of the algorithm, each
of the agents does not terminate until all of the agents
in its agent view appears in its good list. During peri-
ods of inactivity, an agent tries to balance these two lists
by linking to the anyone that they were told are on di-
rect path between themselves and a disconnected agent.
This is where the path information provided as part of
the initialization message comes into play. This process
ensures that the following property is enforced at the ter-
mination of the algorithm:

Property 1 Upon termination, ∀i,jj ∈ good listi ↔ i ∈
good listj

3.1.2. Checking the agent view (Figure 2) After
the agents receive all of the initialization messages, they
execute the check agent view procedure. In this proce-
dure, the current agent view (assigned, known variable
values) is used to calculate the current cost, Fi, of the
relationship subgraph formed by the agents within the
good list. If, during this check, an agent finds that Fi is
greater than the optimal value of the subsystem, called
F ∗

i , and has not been told by a higher priority agent that

they want to mediate, it assumes the role of the media-
tor. This check ensure that the following property is ob-
tained at the termination of the algorithm:

Property 2 Upon termination, ∀iF
∗
i = = Fi

Agents within the system are able to tell when a higher
priority agent wants to mediate because of the mi flag
mentioned in the previously section. Whenever an agent
checks its agent view it recomputes the value of this flag
which indicates its desire to mediate in the future if given
the opportunity. This information is shared with each of
the agents in its agent view whenever the value changes.
The overall effect of the mi flag is similar to the two-phase
commit commonly seen in database systems and ensures
that the protocol remains live-lock and deadlock free.

As the mediator, an agent first attempts to rectify the
suboptimal condition by changing its own variable. This
simple technique prevents sessions from occurring unnec-
essarily, when it works, which stabilizes the system and
saves messages and time. If the mediator finds a value
that makes Fi == F ∗

i and it finds that the functional re-
lationships being improved by the change are shared with
only lower priority agents, it makes the change and sends
out a “value?” message to the agents in its agent view. A
“value?” message is similar to an “init” message, in that
it contains information about the priority, current value,
etc. of a variable. If cannot find such a value, it starts ei-
ther an active or passive mediation session.

Agents decide between an active or passive mediation
based on whether or not one of the suboptimal functional
relations in their good list has an agent in it that is lower
priority. If one of the agents is lower priority, the media-
tion will be active, otherwise, it will be passive.

There are two main difference between active and pas-
sive mediation. First, during an active mediation, the re-
ceiving agent sets its mediate flag. This flag prevents it
from starting or engaging in another active mediation un-
til it is cleared. This causes a region of stability in the
agent system which allows to mediation session to have
the full effect but, reduces parallelism because it prevents
other agents from mediating. The second difference is re-
ally based on the intent. The intent of passive mediation
is to verify and understand the results that higher pri-
ority agents have obtained without interfering in their
actions or changing their current solution. This both in-
creases the parallelism of the problem solving and allows
agents to gain more context (extend their views) with-
out causing system instability.

3.1.3. Mediation (Figures 3, 4, and 5) The most
complex and certainly most interesting part of the pro-
tocol is the mediation session. As was previously men-
tioned in this section, an agent decides to mediate if it
finds that Fi > F ∗

i and is not expecting a session re-
quest from a higher priority agent. The mediation session
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Figure6.The startupandfirst stepofOptAPOsolv-

ing an example 2-coloring problem.

starts when the mediator sending out “evaluate?” mes-
sages to each of the agents in its good list. The purpose
of this message is two-fold. First, it informs the receiv-
ing agent that a mediation is about to begin and, as men-
tioned earlier, if the mediation is active, tries to obtain
a lock from that agent. The second purpose of the mes-
sage is to obtain information from the agent about the ef-
fects of making them change their local value. This is a
key point. By obtaining this information, the mediator
gains information about variables and relationships out-
side of its local view without having to directly and imme-
diately link with those agents. When an agent receives a
mediation request, it will respond with either a “wait!” or
“evaluate!” message. Agents respond with a “wait” mes-
sage whenever the request is for an active session and the
agent is either currently involved in another active ses-
sion or is expecting a request for an active session from
an agent that is higher priority than the requester. This
allows for a great deal of parallelism because all passive
requests are responded to and active requests are only
turned away when absolutely needed. Whenever it can,
the agent evaluates each of its domain elements and la-
bels them with the names of the agents that would have
a shared functional relation with cost fi > f∗

i along with
that cost if it were asked to take that value.1 This infor-
mation is returned in an “evaluate!” message. It should be

1 In the graph coloring domain, the labeled domain can never ex-
ceed O(|di|+ n).
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Figure 7. The second step and final step of Op-

tAPO solving an example 2-coloring problem.

noted that, although in this implementation, the agents
need not return all of the names if for security reasons
they wish not to. This effects the optimality of the al-
gorithm because it prevents agents from gaining enough
context, but does provides some degree of autonomy and
privacy to the agents.

When the mediator has received a response from all of
the agents that it has sent a request to, it chooses a solu-
tion. Agents that sent a “wait!” message are dropped from
the mediation, but the mediator attempts to fix what-
ever problems it can based on the information it receives
from the agents in the session. The mediator conducts a
Branch and Bound search [1] which, as a primary crite-
ria, minimizes the cost of the subproblem in the good list

and as a secondary criteria minimizes the costs for agents
outside of the session. The results of minimizing the pri-
mary criteria, being the optimal value for the subprob-
lem in the good list is saved as F ∗

i .
The agents employ two special tactics during this

search. First, the values are ordered so that the first
branch of the search is the current solution. This usu-
ally causes the bound to become very close to F ∗

i af-
ter it is explored taking advantage of previous work that
has been done on the problem. This has the overall ef-
fect of improving the search speed as was reported in
[9]. The second tactic terminates the search early when-
ever the bound is equal to the current F ∗

i and the cost for
agents outside of the mediation is 0. This method works
because the current F ∗

i is always an upper bound on the
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actual F ∗ and F ∗
i only increases on successive search due

to the monotonic nature of the number of variables in
the search and the aggregation function. The effort con-
ducted during the search can be reduced considerably us-
ing this method.

After finishing the local search, the mediator links
(sends “init” messages) with any agent that is not in
its agent view and has been forced to have an increased
cost as a result of the solution it found. This step ex-
pands the agent’s good list so that the next time it me-
diates, it does not repeat the same mistake. It then com-
putes the overall effect of making the changes based on
its new larger perspective. If the overall effect is nega-
tive, the mediator ignores the newly computed solution
and reverts to the current solution, effectively prevent-
ing itself from making a locally optimal decision that has
obviously bad global consequences. The mediator con-
cludes the session by sending “accept!” messages (if the
session was active) to the agents in the session, who, in
turn, adopt the proposed answer and “value?” messages
to any agent that responded with a “wait” message.

3.2. An Example

Consider the 2-coloring problem in figure 6(a), which
was chosen to illustrate the algorithms features without
being overly complicated. In this problem there are 6 vari-
ables, each assigned to one agent, and 9 functional rela-
tions between the variables. Each of the functional rela-
tions is a ’not equals’ and has a cost of 1 for being vi-
olated. The goal of the agents is to minimize the global
cost. In other words, this is a MaxSAT problem instance.

On startup, the problem is in the state in figure 6(a).
The current cost of the system is 5, because 5 of the ’not
equals’ relationships are violated (indicated by the dot-
ted lines). Each of the agent has an internal optimal sub-
system value, F ∗

i = 0, since none of them have mediated
and therefore computed the actual value.

Following the protocol, the agents send out “init” mes-
sages to each of their neighbors. So, for example in this
problem, ND0 send out “init” messages to ND1, ND2,
and ND3. As the “init” messages are received, the agents
add each of their neighbors to their good list because they
have a direct path through a shared relation.

Once all of the “init” messages are received, the agents
check their agent view. Several of the agent are able to
detect the non-optimal state of the problem by comput-
ing the value of Fi. For example, ND2 computes an Fi = 4
and sets its mi flag to active. In fact, being the high-
est priority agent in the system, it has a priority of 5,
it elects to take over as the mediator and begins an ac-
tive session with ND0, ND3, ND4, and ND5.

As the mediator, ND2 first checks to see if it can cor-
rect the suboptimality by making a local change, which
it cannot. It sends “evaluate?” messages to ND0, ND3,

ND4, and ND5. Each of these agents, upon receiving the
message, checks to see if they are expecting a mediation
from a higher priority agent, which they are not, and
then sets their mediate flag to active. They label each
of their domain elements and reply with the following in-
formation using “evaluate!” messages:

• ND0 - Black conflicts with ND1; Red conflicts with
ND2 and ND3

• ND3 - Black conflicts with ND5; Red conflicts with
ND0 and ND2

• ND4 - Black conflicts with ND1 and ND5; Red con-
flicts with ND2

• ND5 - Black conflicts with ND4; Red conflicts with
ND2 and ND3

ND2 conducts a Branch and Bound search and finds
that F ∗

i = 2 for its good list as well as finding a solution
which has 0 conflicts external to the mediation. It tells
ND2 and ND4 to change their value to Black, leaving the
system in the state in figure 6(b).

All of the agents check their agent view again. This
time, ND5 decides to mediate and being unable to cor-
rect the difference in its Fi and F ∗

i , it sends “evaluate?”
messages to ND2, ND3, and ND4. It receives the follow-
ing information from those agents in the returned “eval-
uate!” messages:

• ND2 - Black conflicts with ND5; Red conflicts with
ND0, ND3, and ND4

• ND3 - Black conflicts with ND2 and ND5; Red con-
flicts with ND0

• ND4 - Black conflicts with ND1, ND2, and ND5; Red
causes no conflicts

ND5 also conducts an internal search, and finds a solu-
tion with an F ∗

i = 1, but has one conflict outside of the
session unresolved. The solution it found, in fact, is iden-
tical to the current assignments. It links with ND0, hav-
ing been unable to fix the conflict between ND0 and ND3
which leaves the problem in the state in figure 7(a).

After several more steps, the algorithm terminates in
the state in figure 7(b).

3.3. Soundness and Optimality

The soundness and optimality proofs for OptAPO are
quite lengthy and due to space limitations cannot be pre-
sented here. The key ideas of the proof are as follows:

1. Let’s assume that the algorithm terminated in a sub-
optimal state. That means that at least one fi has a
value that is higher than it should be.

2. Since we know by Property 2 that at the very least
each of the agents within fi must have F ∗

i = =
Fi, each of them must have a subproblem in their
good list that justifies the value at fi otherwise they
would have continued processing, contradicting the
assumption.
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Figure 8. Comparison of OptAPO and Adopt for

various graphs sizes at m = 2.0n.

3. There cannot be another fj in their good lists that
should have a reduced value instead of fi.

(a) Assume that some other fj should have had its
value increased instead of fi.

(b) In order to make a difference, from a global op-
timality perspective, fj must be part of multi-
ple overlapping subproblems that each justify
an increased value and will be improved by in-
creasing fj .

(c) Since, by Property 1, we know that the agents
within fj have the agents in fi within their
good lists and, in fact, have the agents for any
other increased fk that would be fixed by in-
creasing fj , they must have a F ∗ < F because
they couldn’t have found a subproblem that jus-
tifies the entire increased cost.

(d) This means they will continue processing, con-
tradicting the termination assumption.

In the worse case, each of the agents centralizes the entire
problem in order to terminate, making the overall com-
plexity of this algorithm exponential. The space complex-
ity of the algorithm is polynomial in the number of vari-
ables.

4. Evaluation

To evaluate the OptAPO algorithm, we ran two series
of tests. In the first series of tests, we compared the num-
ber of cycles and messages used by OptAPO against the
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Figure 9. OptAPO and Adopt on various problem

sizes at m = 3.0n.

currently fastest known DCOP algorithm, Adopt [8] in
the commonly used graph coloring domain. We created
random graph coloring instances with m = 2.0n (under-
constrained) and m = 3.0n (over-constrained). We gen-
erated 100 instances at n=8,12,16,20, and 24 for a total
of 1000 individual graphs. During a cycle, all of the in-
coming messages are delivered and processed, and out-
going messages are queued for delivery at the beginning
of the next cycle. For fairness, we used the same graphs
to test both algorithms. The results of this series can be
seen in figures 8(a) 8(b), 9(a), and 9(b).

In the second set of tests, we compared the actual
run times of the two algorithms against each other. For
the Adopt implementation, we downloaded the simula-
tor and algorithm available on-line. We implemented the
OptAPO algorithm in the Farm simulation environment
described in [4]. This environment was designed to sim-
ulate the run time behavior of a distributed algorithm
by only allowing a finite amount of CPU time to the
agents within a given cycle. We are therefore able to re-
port the serial time, the total time it took the simula-
tion to finish, and the parallel time, the execution time
if the n agent were on n dedicated machines. Both algo-
rithms were run on a single, dedicated 2.8 GHz Pentium
4 with 512MB of RAM on a 25 instance subset of the
graphs from the first series of tests. To show that Op-
tAPO’s performance was not simple an artifact of the
Branch and Bound search internal to the agents, we ran
that algorithm on the graph instances as well. The re-
sults from this test can be seen in figures 10(a) and 10(b)
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Adopt, and centralized Branch and Bound.

which are logarithm scale.
As you can see from the figure, OptAPO outperforms

Adopt for both cycles and messages on both under and
over constrained problems. However, when comparing the
run time results, we can see that Adopt runs slightly
faster on small under-constrained problems. This may,
in fact, be caused by the overhead associated with the
Farm simulator. As the number of agents increases, the
overhead tends be less dominate and the OptAPO serial
time is comparable to Adopt’s (we extended the test se-
ries to 28 variables to show that OptAPO outperforms
Adopt at higher values of n for under-constrained prob-
lem). What you should also notice is that although Op-
tAPO uses the Branch and Bound search internally, it ac-
tually runs faster than when this search is conducted in
a centralized fashion. This is by no means meant to show
that a distributed algorithm operates faster than a cen-
tralized one, but shows that the runtime characteristics of
the algorithm are not simple a by product of the central-
ized search. In fact, the improvements in search time over
the centralized search are most likely caused by the com-
bination of the value ordering heuristic and early search
termination method talked about in section 3.1.3.

5. Conclusions

In this paper, we presented a new method for solv-
ing DCOPs called Optimal Asynchronous Partial Over-
lay (OptAPO). The key features of this technique are
that agents mediate over conflicts, the context they use
to make local decisions overlaps with that of other agents,

and as the problem solving unfolds, the agents gain more
context information along the critical paths within the
problem to improve their decisions. We have shown that
the OptAPO algorithm is both sound and optimal and
that it performs better than the Adopt algorithm on most
MaxSAT graph coloring problems.
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Abstract

Distributed Constraint Satisfaction (DCSP) has long
been considered an important area of research for multi-
agent systems. This is partly due to the fact that many
real-world problems can be represented as constraint sat-
isfaction and partly because real-world problems often
present themselves in a distributed form. In this paper,
we present a complete, distributed algorithm called asyn-
chronous partial overlay (APO) for solving DCSPs that
is based on a cooperative mediation process. The primary
ideas behind this algorithm are that agents, when acting
as a mediator, centralize small, relevant portions of the
DCSP, that these centralized subproblems overlap, and
that agents increase the size of their subproblems along
critical paths within the DCSP as the problem solving
unfolds. We present empirical evidence that shows that
APO performs better than other known, complete DCSP
techniques.

1. Introduction

Distributed constraint satisfaction has become a
classic formulation that is used to describe a num-
ber of distributed problems including distributed re-
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Air Force Research Laboratory, Air Force Materiel Command,
USAF,under agreement numberF30602-99-2-0525. The views
and conclusions contained herein are those of the authors and
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Defense Advanced Research Projects Agency (DARPA), Air
Force Research Laboratory, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
forGovernmental purposes notwithstanding any copyright an-
notation thereon.

† The first author is a student.

source allocation [2, 10], distributed scheduling [11],
and distributed interpretation [7]. It’s no wonder that
a vast amount of effort and research has gone into cre-
ating algorithms, such as distributed breakout (DBO)
[13], asynchronous backtracking (ABT) [12], and asyn-
chronous weak-commitment (AWC) [14], for solving
these problems.

Unfortunately, a common drawback to each of these
techniques is that they prevent the agents from mak-
ing informed local decisions about the effects of chang-
ing their local variable value without actually doing
it. For example, in AWC, agents have to try a value
and wait for another agent to tell them that it will
not work through a nogood message. Because of this,
agents never learn why another agent or set of agents
is unable to accept the value, they only learn that their
value in combination with other values doesn’t work.

In this paper, we present a cooperative mediation
based DCSP protocol, called Asynchronous Partial
Overlay (APO), that allows the agents to extend and
overlap the context that they use for making their local
decisions. When an agent acts as a mediator, it com-
putes a solution to a portion of the overall problem and
recommends value changes to the agents involved in the
mediation session. This technique allows for rapid, dis-
tributed, asynchronous problem solving without the ex-
plosive communications overhead normally associated
with current distributed algorithms. APO represents a
new methodology that lies somewhere between central-
ized and distributed problem solving which exploit the
best characteristics of both. In the graph coloring do-
main, this algorithm performs better, both in terms of
communication and computation, than the AWC algo-
rithm. This is particularly true for problems that lie
near or to the right of the phase transition.

In the rest of this paper, we present a formalization
of the DCSP problem. We then present the APO algo-
rithm and discuss the issues of soundness and complete-
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procedure initialize
di ← random d ∈ Di;
pi ← sizeof(neighbors);
mi ← true;
mediate← false;
add xi to the good list;
send (init, (xi, pi, di, mi, Di, Ci)) to neighbors;
initList← neighbors;

end initialize;

when received (init, (xj , pj , dj , mj ,Dj , Cj)) do
Add (xj , pj , dj ,mj , Dj , Cj) to agent view;
if xj is a neighbor of some xk ∈ good list do

add xj to the good list;
add all xl ∈ agent view ∧ xl /∈ good list

that can now be connected to the good list;
pi ← sizeof(good list);

end if;
if xj /∈ initList do

send (init, (xi, pi, di,mi,Di, Ci)) to xj ;
else

remove xj from initList;
check agent view;

end do;

Figure 1. The APO procedures for initialization

and linking.

ness as well as presenting an example of the execution
on a simple problem. Next, we present the results of ex-
tensive testing that compares APO with AWC within
the commonly used graph coloring domain. Lastly, we
discuss some of our conclusions and future directions.

2. Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) consists
of the following:

• a set of n variables V = {x1, . . . , xn}.

• discrete, finite domains for each of the variables
D = {D1, . . . , Dn}.

• a set of constraints R = {R1, . . . , Rm} where each
Ri(xi1, . . . , xij) is a predicate on the Cartesian
product Dk1 × · · · × Dkj that returns true iff the
value assignments of the variables satisfies the con-
straint.

The problem is to find an assignment
A = {d1, . . . , dn|di ∈ Di} such that each of the con-
straints in R is satisfied. Overall, CSP has been show
to be NP-complete, making some form of search a ne-
cessity.

In the distributed case, using variable-based decom-
position, each agent is assigned one or more variables
along with the constraints on their variables. The goal
of each agent, from a local perspective, is to ensure
that each of the constraints on its variables are satis-
fied. It should be fairly clear that for each of the agents,

when received (ok?, (xj , pj , dj ,mj)) do
update agent view with (xj , pj , dj ,mj);
check agent view;

end do;

procedure check agent view
if initList 6= ∅ or mediate 6=false do

return;
m′

i
← hasConflict(xi);

if m′

i
and ¬∃j(pj > pi ∧mj = = true)

if ∃(d′i ∈ Di) (di ∪ agent view does not conflict)
and conflicts are with lower priority neighbors
di ← d′

i
;

send (ok?, (xi, pi, di,mi)) to all xj ∈ agent view;
else

do mediate;
else if mi 6= m′

i
mi ← m′

i
;

send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
end if;

end check agent view;

Figure 2. The procedures for doing local resolu-

tion, updating the agent view and the good list.

achieving this goal is not independent of the goals of the
other agents in the system. In fact, in all but the sim-
plest cases, the goals of the agents are strongly inter-
related. For example, in order for one agent to satisfy
its local constraints, another agent, potentially not di-
rectly related through a constraint, may have to change
the value of its variable.

In this paper, for the sake of clarity, we restrict our-
selves to the case where each agent is assigned a sin-
gle variable and is given knowledge of the constraints
on that variable. Since each agent is assigned a single
variable, we will refer to the agent by the name of the
variable it manages. Also, we restrict ourselves to con-
sidering only binary constraints which are of the form
Ri(xi1, xi2). It is fairly easy to extend our approach
to handle the case where one or both of these restric-
tions are removed.

3. Asynchronous Partial Overlay

3.1. Key Ideas

The key ideas behind the creation of the APO algo-
rithm are

• Using mediation, agents can solve subproblems of
the DCSP through local search.

• These local subproblems can and should overlap
to allow for more rapid convergence of the prob-
lem solving.

• Agents should, over time, increase the size of
the subproblem they work on along critical paths
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procedure mediate
preferences← ∅;
counter← 0;
for each xj ∈ good list do

send (evaluate?, (xi, pi)) to xj ;
counter ++;

end do;
mediate← true;

end mediate;

when receive (wait!, (xj , pj)) do
counter - -;
if counter == 0 do choose solution;

end do;

when receive (evaluate!, (xj , labeled Dj)) do
record (xj , labeled Dj) in preferences;
counter - -;
if counter == 0 do choose solution;

end do;

Figure 3. The procedures for mediating an APO

session.

within the CSP. This activity increases the over-
lap with other agents and ensures the complete-
ness of the search.

3.2. The Algorithm

Figures 1, 2, 3, 4, and 5 present the basic APO algo-
rithm. The algorithm works by constructing a good list

and maintaining a structure called the agent view.
The agent view holds the names and some information
about the values, domains, and constraints of agents
that are linked to the owner of the agent view. The
good list holds the names of the agents that the owner
has identified a path to through the constraint graph.

In order to facilitate the problem solving process,
each agent has a dynamic priority that is based on the
size of their good list. Priorities are used by the agents
to decide who mediates a session when a conflicts arises.
Priority ordering is important for two reasons. First,
priorities ensure that the agents with the most knowl-
edge gets to make the decisions. This improves the effi-
ciency of the algorithm by decreasing the effects of my-
opic decision making. Second, priorities improve the ef-
fectiveness of the mediation process. Because lower pri-
ority agents expect higher priority agents to mediate,
they are less likely to be involved in a session when the
mediation request is sent.

3.2.1. Initialization (Figure 1) On startup, the
agents are provided with the value (they pick it ran-
domly if one isn’t assigned) and the constraints on their
variable. Initialization proceeds by having each of the
agents send out an “init” message to each of its neigh-
bors. This initialization message includes the variable’s

procedure choose solution
select a solution s using a Branch and Bound search that:

1. satisfies the constraints between agents in the good list
2. minimizes the violations for agents outside of the session

if ¬∃s that satisfies the constraints do
broadcast no solution;

for each xj ∈ agent view do
if xj ∈ preferences do

if d′
j
∈ s violates an xk and xk /∈ agent view do

send (init, (xi, pi, di,mi,Di, Ci)) to xk;
add xk to initList;

end if;
send (accept!, (d′

j
, xi, pi, di, mi)) to xj ;

update agent view for xj

else
send (ok?, (xi, pi, di, mi)) to xj ;

end if;
end do;
mediate← false;
check agent view;

end choose solution;

Figure 4. The procedure for choosing a solution

during an APO mediation.

name (xi), priority (pi), current value(di), the agent’s
desire to mediate (mi), domain (Di), and constraints
(Ci). The array initList records the names of the agents
that initialization messages have been sent to, the rea-
son for which will become immediately apparent.

When an agent receives an initialization message (ei-
ther during the initialization or through a later link re-
quest), it records the information in its agent view and
adds the variable to the good list if it can. An agent
is only added to the good list if it is connected to an-
other agent already in the list through a constraint.
This ensures that the graph created by the agents in
the good list always remains connected. The initList

is then checked to see if this message is a link request
or a response to a link request. If an agent is in the
initList, it means that this message is a response, and
the agent is simply removed from the list. If the agent
is not in the initList then it means this is a request,
so a response “init” is generated and sent.

It is important to note that the agents contained in
the good list are a subset of the agents contained in
the agent view. This is done to maintain the integrity
of the good list and allow links to be bidirectional. To
understand this point, consider the case when a single
agent has repeatedly mediated and has extended its
local subproblem down a long path in the constraint
graph. As it does so, it links with agents that may
have a very limited view and therefore are unaware of
their indirect connection to the mediator. In order for
the link to be bidirectional, the receiver of the link re-
quest has to store the name of the requester, but can-
not add them to their good list until a path can be
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when received (evaluate?, (xj , pj)) do
mj ← true;
if mediate == true or ∃k(pk > pj ∧mk = = true) do

send (wait!, (xi, pi));
else

mediate← true;
label each d ∈ Di with the names of the agents
that would be violated by setting di ← d;

send (evaluate!, (xi, pi, labeled Di));
end if;

end do;

when received (accept!, (d, xj , pj , dj , mj)) do
di ← d;
mediate← false;
send (ok?, (xi, pi, di,mi)) to all xj in agent view;
update agent view with (xj , pj , dj ,mj);
check agent view;

end do;

Figure 5. Procedures for receiving an APO ses-

sion.

identified.

3.2.2. Checking the agent view (Figure 2) Af-
ter the agents receive all of the initialization messages
they are expecting, they execute the check agent view
procedure. In this procedure, the current agent view

(assigned, known variable values) is checked to iden-
tify conflicts between an agent and its neighbors. If,
during this check, an agent finds a conflict and has not
been told by a higher priority agent that they want to
mediate, it assumes the role of the mediator.

An agent can tell when a higher priority agent wants
to mediate because of the mi flag mentioned in the pre-
vious section. Whenever an agent checks its agent view

is recomputes the value of this flag based on whether or
not it has existing conflicts with its neighbors. When
this flag is set to true it indicates that the agent wishes
to mediate if it is given the opportunity. This mecha-
nism acts like a two-phase commit protocol, commonly
seen in database systems, and ensures that the proto-
col is live-lock and deadlock free.

As the mediator, an agent first attempts to rectify
the conflict(s) by changing its own variable. This sim-
ple, but effective technique prevents sessions from oc-
curring unnecessarily, when it works, which stabilizes
the system and saves message and time. If the media-
tor finds a value that removes the conflict, it makes the
change and sends out an “ok?” message to the agents in
its agent view. If cannot find a non-conflicting value,
it starts a mediation session. An “ok?” message is sim-
ilar to an “init” message, in that it contains informa-
tion about the priority, current value, etc. of a vari-
able.

3.2.3. Mediation (Figures 3, 4, and 5) The most
complex and certainly most interesting part of the pro-
tocol is the mediation. As was previously mentioned in
this section, an agent decides to mediate if it is in con-
flict with one of its neighbors and is not expecting a
session request from a higher priority agent. The medi-
ation starts with the mediator sending out “evaluate?”
messages to each of the agents in its good list. The pur-
pose of this message is two-fold. First, it informs the re-
ceiving agent that a mediation is about to begin and
tries to obtain a lock from that agent. This lock, re-
ferred to as mediate in the figures, prevents the agent
from engaging in two sessions simultaneously or from
doing a local value change during the course of a ses-
sion. The second purpose of the message is to obtain
information from the agent about the effects of mak-
ing them change their local value. This is a key point.
By obtaining this information, the mediator gains in-
formation about variables and constraints outside of
its local view without having to directly and immedi-
ately link with those agents.

When an agent receives a mediation request, it will
respond with either a “wait!” or “evaluate!” message.
The “wait” message indicates to the requester that the
agent is currently involved in a session or is expecting
a request from a agent of higher priority than the re-
quester. If the agent is available, it labels each of its
domain elements with the names of the agents that
it would be in conflict with if it were asked to take
that value.1 This information is returned in the “eval-
uate!” message. It should be noted that, although in
this implementation, the agents need not return all of
the names if for security reasons they wish not to. This
effects the completeness of the algorithm, because the
completeness relies on one or more of the agents eventu-
ally centralizing the entire problem, but does provides
some degree of autonomy and privacy to the agents.

When the mediator has received either a “wait!” or
“evaluate!” message from all of the agents that it has
sent a request to, it chooses a solution. Agents that
sent a “wait!” message are dropped from the media-
tion, but the mediator attempts to fix whatever prob-
lems it can based on the information it receives from
the agents in the session. Currently, solutions are gen-
erated using a Branch and Bound search [5] where all
of the constraints must be satisfied and the number
of outside conflicts is minimized (like the min-conflict
heuristic [9]). If no satisfying assignments are found,
the agent announces that the problem is unsatisfiable
and the algorithm terminates. Once the solution is cho-

1 In the graph coloring domain, the labeled domain can never
exceed O(|di|+ n).
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Figure 6. An example of a 3-coloring problem

with 6 nodes and 9 edges.
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Figure 7. The state of the sample problem after

ND3 leads the first mediation.

sen, “accept!” messages are sent to the agents in the
session, who, in turn, adopt the proposed answer.

3.3. An Example

Consider the 3-coloring problem presented in figure
6. In this problem, there are 6 agents, each with a vari-
able and 9 edges or constraints between them. The con-
straint between ND2 and ND3 is in violation because
both agents have the color Black assigned to their vari-
ables. Following the algorithm, upon startup each agent
adds itself to its good list and sends an “init” message
to its neighbors. Upon receiving these messages, the
agents add each of their neighbors to their good list

because they are able to identify a shared constraint
with themselves.

Once the startup has been completed, each of the
agents checks its agent view. ND3 and ND2 find that
they are in conflict. ND2, being the lower priority of the
two, waits for ND3 to start a mediation. ND3, know-
ing it is higher priority, first checks to see if it can re-
solve the conflict by changing its value, which in this
case, it cannot. ND3 starts a session that involves ND1,
ND2, ND4, and ND5. It sends each of them an “eval-
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ND1
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constraint

link

Figure 8. The final solution after ND2 leads the

second mediation.

uate?” message.
When each of the agents in the mediation receives

the “evaluate?” message, they label their domain ele-
ments with the names of the variables that they would
have be in conflict with as a result of adopting that
value. They each send ND3 an “evaluate!” message
with this information. The following are the labeled
domains for each of the agents

• ND1 - Black conflicts with ND2 and ND3; Red
conflicts with ND0; Blue causes no conflicts

• ND2 - Black conflicts with ND3; Red conflicts with
ND0; Blue conflict with ND1 and ND4

• ND4 - Black conflicts with ND2 and ND3; Red
conflicts with ND0; Blue causes no conflicts

• ND5 - Black conflicts with ND3; Red causes no
conflicts; Blue causes no conflicts

Once all of the responses are received, the mediator,
ND3, conducts a branch and bound search that at-
tempts to find a satisfying assignment to the problem
that minimizes the amount of conflict that would be
created outside of the mediation. If it cannot find at
least one satisfying assignment, it broadcasts that a so-
lution cannot be found. In the example, it chooses to
have ND2 change its color to Red, introducing a new
conflict between ND2 and ND0. As the last part of the
mediation, ND3 links with ND0, leaving the problem
in the state shown in figure 7. Note that when this hap-
pens, ND3 adds ND0 to its good list and vice versa.

ND1, ND2, ND4 and ND5 inform the agents in their
agent view of their new values, then check for conflicts.
This time, ND2 and ND0 notice that their values are in
conflict. ND2, being higher priority, becomes the medi-
ator and mediates a session with ND0, ND1, ND3, and
ND4. Following the protocol, ND2 sends out the “eval-
uate?” messages and the receiving agents label and re-
spond. The following are the labeled domains that are
returned:
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• ND0 - Black causes no conflicts; Red conflicts with
ND2; Blue conflicts with ND1 and ND4

• ND1 - Black conflicts with ND3; Red conflicts with
ND2; Blue causes no conflicts

• ND3 - Black causes no conflicts; Red conflicts with
ND2 and ND5; Blue conflicts with ND1 and ND4

• ND4 - Black conflicts with ND3; Red conflicts with
ND2; Blue causes no conflicts

ND2, after receiving these messages, conducts its
search and finds two solutions that solve its subprob-
lem. It chooses to change the color of ND0 to Black
and the problem is solved (see figure 8).

3.4. Soundness and Completeness

The proofs of APO’s soundness and completeness
are quite lengthy, so for simplicity, we refer the reader
to [8] for their full details. Below are the main ideas
that are used in them. In the actual proofs, we assume
that all communications are reliable, meaning that if a
message is sent from xi to xj that xj will receive the
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Figure 10. Comparison of the number of cy-

cles and messages needed to solve satisfiable,

medium-density 3-coloring problems of various

size by AWC and APO.

message in a finite amount of time. We also assume
that if xi sends a message m1 to xj before sending an-
other message m2 to xj , that m1 will be received be-
fore m2.

• If at anytime an agent identifies a constraint sub-
graph that is not satisfiable, it announces that the
problem cannot be solved. Half of the soundness.

• If a constraint violation exists, someone will try
to fix it. The protocol is dead-lock free. The other
half of the soundness.

• Eventually, in the worst case, one or more of the
agents will centralize the entire problem and will
derive a solution, or report that no solution exists.
This ensures completeness.

4. Evaluation

To test the APO algorithm, we implemented the
AWC and APO algorithms and conducted experiments
in the distributed 3-coloring domain. The particular
AWC algorithm we implemented can be found in [14]
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Figure 11. Comparison of the number of cycles
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which includes the resolvent nogood learning mecha-
nism described in [6]. The distributed 3-coloring prob-
lem is a 3-coloring problem with n variables and m bi-
nary constraints distributed amongst the agents. We
conducted two sets of experiments. In the first set
of experiments, we created solvable graph instances
with m = 2.0n (low-density), m = 2.3n (medium-
density), and m = 2.7n (high-density) according to
the method presented in [9]. Although, it was reported
in [1] that m = 2.7n was within the critical region
for 3-colorability, they were using reduced graphs for
their analysis. In [3], the critical region was identified
as being approximately m = 2.3n and therefore was in-
cluded in our tests. We generated 10 random graph for
n = 15, 30, 45, 60, 75, 90 and for each instance gener-
ated 10 initial variable assignments. For each combi-
nation of n and m, we ran 100 trials making a total
of 1800 trials. The results from this experiment can be
seen in figures 9(a) through 11(b).

In the second set of experiments, we created com-
pletely random 60 node graphs of various density from
1.8n to 2.9n. This was done to test the completeness
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of the algorithms and to verify the correctness of their
implementations. For each density value, we generated
200 random graphs each with a single set of initial val-
ues. In total, 1400 graphs were generated and tested.
We stopped the execution of the algorithms at 1000 cy-
cles for the sake of time. The results of these experi-
ments are shown in figures 12(a) and 12(b).

To evaluate the relative strengths and weakness of
each of the approaches, we measured the number of cy-
cles and the number of messages used during the course
of solving each of the problems. During a cycle, incom-
ing messages are delivered, the agent is allowed to pro-
cess the information, and any messages that were cre-
ated during the processing are added to the outgoing
queue to be delivered at the beginning of the next cycle.
The actual execution time given to one agent during a
cycle varies according to the amount of work needed
to process all of the incoming messages. The random
seeds used to create each graph instance and variable
instantiation were saved and used by each of the algo-
rithms for fairness.

When looking at the results for satisfiable graph
instances, you can see that on low-density satisfiable
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graphs AWC and APO perform almost identically in
terms of cycles to completion. As the density of the
graph increases however, the difference become more
apparent. APO begins to scale more efficiently than
AWC. This can be attributed to the ability of APO to
rapidly identify strong interdependencies between vari-
ables and to derive solutions to them using a central-
ized search of the partial subproblem. We should men-
tion that the results of the testing on AWC obtained
from these experiments agree with those reported in [6]
verifying the correctness of our implementation.

On random instances, APO significantly outper-
forms AWC on all but the simplest of problems (see
figure 12(a)). The most direct cause of this is the per-
formance of AWC’s poor performance on unsatisfiable
problem instances as previously reported in [4].

The most profound difference in the algorithms can
be seen in the number of messages used by them to
solve problems. In all cases, APO outperform AWC by
a significant amount. There are two primary causes for
this. First, the mediation process creates regions of sta-
bility in the agent environment. So, unlike AWC, APO
is able to avoid thrashing behavior that is caused by
the asynchrony of operating in a distributed environ-
ment. Second, because APO uses partial centralization
to solve problems, it avoids having to use a large num-
ber of messages to discover implied constraints through
trial and error.

5. Conclusions

In this paper, we presented a new method for solv-
ing DCSPs called the Asynchronous Partial Overlay al-
gorithm. The key features of this technique are that
agents mediate over conflicts, the context they use to
make local decisions overlaps with that of other agents,
and as the problem solving unfolds, the agents gain
more context information along the critical paths of
the constraint graph to improve their decisions. We
have shown that the APO algorithm is both sound and
complete and that it performs as well as, if not bet-
ter than the AWC algorithm on graph coloring prob-
lems of various size and difficulty.
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Abstract

In this paper we describe our solution to a real-time distributed track-

ing problem. The system works not by finding an optimal solution, but

through a satisficing search for an allocation that is “good enough” to

meet the specified resource requirements, which can then be revised over

time if needed. The agents in the environment are first organized by

partitioning them into sectors, reducing the level of potential interaction

between agents. Within each sector, agents dynamically adopt various

roles depending on the current state of the environment. These roles form

goals which then are instantiated as task structures for use by the SRTA

control architecture. These elements exist to support resource allocation,

which is directly effected through the use of the SPAM mediation protocol.

The agent problem solving component first discovers and generates com-

mitments for sensors to use for gathering data, then determines if conflicts
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exist with that allocation, finally using arbitration and relaxation strate-

gies to resolve such conflicts. We have empirically tested and evaluated

these techniques in both the Radsim simulation environment and using a

hardware-based system.

1 Introduction

Recently, distributed sensors networks have begun to receive a great deal of

attention from researchers in a variety of disciplines such as electrical engi-

neering, computer networking [1, 2], and multi-agent systems [3]. Classically,

sensors and their associated networks have received the most attention from

engineers and researchers studying the properties and fabrication of the sensors

themselves. These sensors have most commonly been controlled and monitored

using high-powered, expensive centralized facilities which rely on dedicated un-

derlying networks to transmit control information and receive raw or partial

processed data from the sensors. In addition, most existing sensor networks are

special purpose and entirely independent of one another when they could be

use to fulfill multiple purposes. For example, weather monitoring and air traf-

fic control radar systems have classically been isolated from one another even

though they essentially use the same type of sensors.

With the increasing availability of a range of network technologies, researchers

have begun to investigate the idea of using low-cost, off-the-shelf computers to

monitor and control large numbers of shared sensors in a distributed way. There

are a number of benefits to migrating control and monitoring away from a small

number of centralized facilities. Among these are fault tolerance, localization of

computation and communication within the networks for scalability, and rapid

adaptability of shared sensing resources to changing environmental conditions.

For example, envision a system in which a number of chemical sensors are

deployed throughout a region. Each of these sensors may have some limited

ability to sense chemical signatures from the environment. From day to day,

these sensors receive tasks of varying importance from scientists performing

environmental studies such as monitoring the effects of greenhouse gases, acid

rain, heavy metals, etc. At the same time, in the background, these same sensors

monitor for more insidious chemical signatures, such as chemical weapons.

Now imagine that one of these sensors detects a poisonous gas. Immediately,
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it would autonomously switch its focus and processing power to specifically

monitor the concentrations of that specific gas. It could begin to coordinate

with neighboring chemical and weather tracking sensors to verify the detection,

hone in on a specific chemical by using sensors with other capabilities, as well as

monitor and predict the chemical’s spread. The computer controlling the sensor

could enlist the assistance of other computers which could then disseminate the

information to the proper authorities, begin the evacuation of effected areas,

etc.

In this article, we describe a distributed sensor network for discovering and

tracking targets that has a number of characteristics in common with the exam-

ple chemical detection sensor network described above. In particular, each of

the sensors within our system has multiple, competing goals of various impor-

tance, high-level goals can only be accomplished by coordinating the actions of

several sensors, and the control needs to be both distributed and autonomous

in order to operate in real-time.

Our approach to managing this network consists of three major architec-

tural and behavioral contributions. First, each sensor platform is controlled

by a single agent which exists as part of a larger, heterogeneous organizational

structure. This structure helps bound and focus the computation necessary to

solve the distributed tracking problem by associating individual agents with one

or more roles within that organization, taking responsibility for different parts

of the overall goal. Second, individual agents are sophisticated, autonomous

problem solvers. Each incorporates a domain independent soft real-time control

architecture (SRTA) which is used to model and control the activities of the

agent, and a domain specific problem solving component which reasons about

and reacts to the surrounding environment. Finally, a negotiation mechanism

and protocol (SPAM) is employed to allocate sensor resources and resolve con-

flicts. Agents in the organization responsible for tracking use this protocol to

ensure sufficient quantity and qualities of data are obtained for all targets to be

tracked, if at all possible.

Each of these technologies plays an important role solving the sensor-to-

target allocation problem. The SPAM protocol [4] lies at the heart of this

process, enabling agents to request sensors, and then dynamically detect and

resolve conflicts when they arise by using distributed negotiation. Where SPAM

resolves conflict between agents, the SRTA architecture [5] resolves conflicts that

59



A

C

B

D

Figure 1: High-level architecture. A: sectorization of the environment, B: dis-

tribution of the scan schedule, C: communicating over tracking measurements,

and D: fusion of tracking data.

exist within an agent. By modeling tasks and commitments and using several

scheduling techniques to manage local activities, SRTA allows allocations to ac-

crue quality even when there are unresolved conflicts. The organizational design

both acts to limit the distance over which information must be propagated and

concentrates the information needed for the various organizational roles to op-

erate efficiently. This has the important effect of reducing communication effort

and facilitate the allocation process. All of these technologies must operate in

real-time to be effective in this distributed sensor network environment.

In the remainder of this article, we will give an overview of the sensor network

used in this work, describe its organization, the agent control mechanisms, and

the resource allocation protocol. Section 6 discusses results and experiences

from implementing the system both in simulation and on actual hardware. The

article will conclude with some final thoughts and discussion of future work.

2 Overview

The sensor platforms used in our network each incorporate three Doppler radar-

based sensor heads (Zemany and Gaughan in [3]) that have a range of approx-
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Figure 2: The sensor platforms have three Doppler radar sensor heads and are

controlled by a BASIC stamp micro-controller.

imately 20 feet and a 120 degree viewable arc (see figure 2). The platform is

controlled by a BASIC stamp micro-controller which may only collect data from

one of these sensor heads at any time. Each measurement takes about 400 mil-

liseconds and returns an average amplitude (relative distance) or frequency shift

(relative velocity) over the collection period. Sensor platforms can communicate

with one another over an 8-channel, radio-frequency (RF) system. But, due to

the close proximity of the receiver and transmitter within the platforms, they

are unable to simultaneously transmit and receive messages regardless of chan-

nel assignment. In addition, because this is RF, multiple agents cannot transmit

on a single channel at the same time without causing interference. Each of the

platforms is connected to a computer which is capable of locally hosting one or

more processes.

Several key items should be extracted from this architectural style descrip-

tion of the sensor platforms. The first is that no single platform can effectively

track a target by itself. Tracking, in this sense, should be interpreted as being

able to estimate a target’s position with some degree of certainty and collect-

ing these estimates over time to model and predict the targets future position.

Because the sensors are only capable of returning relative distance, single plat-

forms cannot localize a target to region smaller than a 120 degree arc at some

distance based on a noisy measurement. So, in order to improve its estimate it

must enlist the aid of other sensor platforms to triangulate the target’s position.

If these additional measurement occur in a temporally coordinated fashion the

quality of the triangulation improves, particularly when the target is moving.
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The need for explicit coordination prevents us from using methods like those

presented in [6] which only required one sensor to track a target and migrated

the task through the field as the target moved.

The second key feature of these platforms is that their communication is

unreliable, has limited bandwidth, and limited range. The effect of this is

that information and control must be distributed in order to be reactive to

environmental changes. For instance, let’s say that we were to employ a single

agent to manage all of the coordination needed to track the several targets. In

order for this agent to assign sensors to each of the targets it would need to

know, at very least, the targets’ locations. Since the targets are moving, these

locations would need to be updated frequently enough for the agent to continue

allocating the correct resources to track. In addition, every time a change is

needed to the allocation, this agent would need to communicate with each of the

affected sensor platforms. It should be clear that in a limited communications

environment, this is likely to be infeasible for anything but a small number of

targets. Distributing the work across a number of agents prevents bottle necks

by parallelizing the communications and control.

A high-level view of the solution described in this article can be seen in

Figure 1. Each sensor is controlled by a single agent, and the organizational

design divides these sensor agents into location-based sectors. Each sector has

a sector manager, a role in the organization which has several responsibilities

associated with information flow and activity within the sector. Among these

responsibilities is the dissemination of a scan schedule to each of the sensors

in its sector, which specifies the rate and frequency which should be used to

scan for new targets. An example schedule might be to have the sensors on

the edge of the sector scanning frequently for incoming targets and the sensors

in the interior of the sector lying dormant until a target is detected. The scan

schedule is used by each sensor to create a description of the scanning task,

which is in turn used by the SRTA architecture to schedule local activities.

When a new target is detected, the sector manager selects a track manager,

a different organizational role responsible for tracking that target as it moves

through the environment. This entails estimating future location and heading,

gathering available sensor information, requesting and coordinating over the

sensors, and fusing the data they produce. After determining which sensors can

see its target, the track manager requests commitments from the them.
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Upon receipt of such a commitment, like ‘repeatedly take measurements

using head 1’, sensors takes on a data collection role. Like the scan schedule,

these commitments form the basis of task descriptions used by SRTA to schedule

local activities. If conflicting commitments are received by a sensor, which

implies that the agent has been asked to perform multiple concurrent data

collection roles, SRTA will attempt to satisfy all requests as best possible. This

provides a window of marginal quality where SPAM can detect the conflict,

and then negotiate with the competing agent to find an equitable long-term

solution. As the data is gathered, it is transmitted back to the track manager

for incorporation into the target’s track.

The process of collecting measurements, fusing the data into position es-

timates, modeling the targets predicted path based on these estimates, and

allocating new sensor resources continues until the target is lost or moves out-

side the sensor field. In either case, the track manager revokes all commitments

from the sensors and informs the sector manager that it is no longer tracking

its target. This allows the sensors to be freed up to potentially re-acquire the

target, and allows the sector manager to determine that the detection must be

assigned to a new track manager.

In the next section, we will discuss how the environment is partitioned into

sectors and how roles are assigned to the agents within them.

3 Organizational Design

The notion of “organizational design” is used in many different fields, and gen-

erally refers to how entities in a society act and relate with one another. This

is true of multi-agent systems, where the organizational design of a system can

include a description of what types of agents exist in the environment, what

roles they take on, and how they interact with one another. The objectives

of a particular design will depend on the desired solution characteristics, so for

different problems one might specify organizations which aim toward scalability,

reliability, speed, or efficiency, among other things.

The organizational design used in this solution primarily attempts to address

the scalability problem by concentrating knowledge within the agents that are

most likely to need it and by imposing limits on how far certain classes of in-

formation propagate. As will be seen below, this is done at the expense of
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Figure 3: Total number of messages for 36 agents tracking 4 targets given various

sector sizes.

reaction speed, because by limiting the scope any single agent has, one neces-

sarily increases the required overhead when the agent’s task moves outside that

scope.

The environment itself is organizationally partitioned into a series of sectors,

each a non-overlapping, rectangular portion of the available area, shown in

Figure 1A. The purpose of this division, as will be shown below, is to exploit

locality and limit the interactions needed between sensors. This is an important

element of our attempt to make the solution scalable; these same pressures lead

to the similar approachs taken in [7,8]. In figure 1A, sensors are represented as

divided circles, where each 120 degree arc represents a direction the node can

sense in. As agents come online, they must first determine which sectors they

can affect. Because the environment itself is bounded, this can be trivially done

by providing each agent the height and width of the sectors. The agents can

then use this information, along with their known position and sensor radius, to

determine which sectors they are capable of scanning in. We use this technique

to dynamically adapt the agent population for scanning and tracking activities

to better partition and focus the flow of information.

Within a given sector, agents may work concurrently on one or more of sev-

eral high level goals: managing a sector, tracking a target, producing sensor

data, and processing sensor data. The organizational hierarchy is abstractly

represented in Figure 5. The organizational leader of each sector is a single sec-
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Figure 4: Communication load disparity among agents within each sector.

tor manager, which serves as the locus of activity for that sector. This manager

generates and distribute plans (to the sensor data producers) needed to scan for

new targets, stores and provides local sensor information as part of a directory

service, and assigns track managers. The sector managers act as hubs within a

nearly-decomposable hierarchical organization, by directly specifying scanning

activities, and then selecting agents to oversee tracking activities. They also

concentrate nonlocal information, facilitating the transfer of that knowledge to

interested parties. Individual track managers initially obtain their information

from their originating sector manager, but will also interact directly, though

less frequently, with other sector and track managers, and thus do not follow

a fixed chain of command or operate solely within their parent sector as one

might see in a fully-decomposable organization. Track managers will also form

commitments with one or more agents to gather sensor data, but this relation-

ship is on a voluntary basis, and that gathering agent’s behavior is ultimately

determined locally. Because much of the information being communicated is

contained within sectors, the size and shape of the sector has a tangible effect

on the system’s performance. If the sector is too large, and contains many sen-

sors, then the communication channel used by the sector manager may become

saturated. If the sector is too small, then track managers may spend exces-

sive effort sending and receiving information to different sector managers as its

target moves through the environment.

65



Sensor
Sensor

Sensor
Sensor

Sensor

Sector 
Manager

Sector 
Manager

< 
S

ca
n 

Ta
sk

s
R

es
ul

ts
 >

Sensor

Sensor
Sensor

Sensor

Track 
Manager

T
ra

ck
 T

as
ks

 >
< 

R
es

ul
ts

Track 
Manager

SPAM Negotiation

Track Information >

< Sensor & Other Targets' Information

T

T

Figure 5: Overview of the agent’s organizational hierarchy, with some informa-

tion flows represented.

66



To study the effects of sector size on communication cost, we conducted an

empirical study. In these experiments, a group of 36 sensors were organized

into between 1 and 36 equal-sized sectors. Four targets were introduced into

the environment and the number of messages were measured for a fixed duration

simulation. These simulations were conducted using a perfect communications

model (i.e. channel congestion is not accounted for). As you can see from

Figure 3, sector size has a fairly strong effect on the number of messages being

sent. As you increase the number of agents within a sector, the number of

messages goes down. What is noteworthy about this effect is that it diminishes

rapidly as you increase the sector size. This suggests that there is a point at

which the benefits of increasing the sector size are outweighed by the cost of

centralizing too much information and the resulting communication within the

sector manager. Figure 4 verifies this intuition. This figure shows that as you

put more agents within a single sector, the standard deviation of the message

volume increases. The increase is caused by having a greater portion of the

organization load concentrated within fewer agents.

We have found empirically that a reasonable sector would contain 8 sensors,

but would still function adequately with as many as 10 or as few as 5. The

physical dimensions of such a sector depend on the density of the sensors, and

in different environments one would need to take into account sensor range,

communication medium characteristics and maximum target speed. Further

information on partitioning agent populations, including a more sophisticated

technique which utilizes heterogeneous regions, can be found in [9].

To see how the organization works in practice, consider a scenario starting

with agents determining what sectors they can affect, and which agents are serv-

ing as the managers for those sectors. Ideally, the sector managerial duty would

be delegated and discovered dynamically at runtime, but due to the lack of a

true broadcast capability in the RF communication medium, we statically define

and disburse this information a priori1. In Figure 1, these sector managers are

represented with shaded inner circles. Once an agent recognizes its manager(s),

it sends each a description of its capabilities. This includes such things as the

position, orientation, and range of the agent’s sensor. The manager then has the
1A limited broadcast capability does exist, which can reach all sensors listening on a single

channel. It is not possible in this architecture to broadcast a single message to agents which

are using different channels.
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task of using this data to organize the scanning schedule for its sector. The goal

of the scan schedule is to use the sensors available to it to perform inexpensive,

fast sensor sweeps of the area, in an effort to discover new targets. The man-

ager formulates a schedule indicating where and when each sensor should scan,

and communicates with each agent over their respective responsibilities in that

schedule (see Figure 1B). The manager does not strictly assign these tasks - the

agents have autonomy to locally decide what action gets performed when. This

is important because sensors can potentially scan in multiple sectors, thus there

is the possibility that an agent may receive multiple, conflicting requests for

commitments from different sector managers. The agent’s autonomy and asso-

ciated local controller permit the agent itself to be responsible for detecting and

resolving these conflicts. If one receives conflicting requests for commitments, it

can elect to delay or decommit as needed. Shaded sensors in the previous figure

show agents receiving multiple scan schedule commitments.

Once the scan is in progress, individual sensors report any positive detec-

tions to the sector manager which assigned them the scanning task, which can

then spawn a new track manager as shown in Figure 6. Internally, the sector

manager maintains a list of all local agents that currently perform the role of

track manager, and location estimates for the targets they are tracking. These

location estimates are used to determine the likelihood of the positive detection

being a new target, or one already being tracked. If the target is new, the

manager uses a range of criteria to select one of the agents in its sector to be

the track manager for that target. Not all potential track managers are equally

qualified, and an uniformed choice can lead to very poor tracking behavior if the

agent is overloaded or shares communication bandwidth with other garrulous

agents. Therefore, in making this selection, the manager considers the agents’

estimated load, communication channel assignment, geographic location and

activity history. Ideally, it will select an agent which has minimal channel over-

lap, is not currently tracking a target, but has tracked one previously. This will

minimize the potential for communication collisions, which occur if two agents

on the same channel attempt to send data at the same time, but maximize

the potential amount of cached organizational data the agent can be reuse. As

we have seen previously, this notion of limited communication is an important

motivating factor and recurring theme in this architecture which contributes to

the organizational structure, role selection, protocol design and the frequency
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and verbosity of communication actions.

The assigned track manager (shown in figure 1C with a blackened inner

circle) is responsible for organizing the tracking of its assigned target. To do this,

it first discovers sensors capable of detecting the target, and then communicates

with members of that group to gather the necessary data. Discovery is done

using the directory service provided by the sector managers. One or more queries

are made asking for sensors which can scan in the area the target is predicted

to occupy. The track manager must then determine when the scans should

be performed, considering such things as the desired track fidelity and time

needed to perform the measurement, and coordinate with the discovered agents

to disseminate this goal (see Figure 1C). As with scanning, conflicts can arise

between the new task and existing commitments at the sensor, which the agent

must resolve locally.

The data gathered from individual sensors is collected by an agent respon-

sible for fusing the measurements into a location estimate and extending the

computed track (see Figure 1D). In a general sense, this data fusion agent

could be any agent in the population able to communicate efficiently with both

the data sources and the ultimate destination of the tracking data. However,

the data fusion process for this application (see Vargas et al. in [3]) is fairly

lightweight, and thus does not benefit from distribution for load balancing pur-

poses. In addition, transferring the fused data results introduces an unnecessary

delay while it is being communicated to the track manager. For this reason, in

this work, the data fusion and track manager roles are always performed by the

same agent.

When raw measurement data is received by the track manager, it verifies the

quality and association of the measurement. Quality can be measured by several

means and in this work, the signal-to-noise ratio is used. If a measurement is

returned with a significantly high signal strength, it is considered for potential

fusion. The association of a measurement really involves two different things:

temporal and target association.

Temporal association attempts to match measurements taken from various

sensors based on the time the measurements were taken. As previously men-

tioned, the accuracy of triangulating a moving target is in part dependent on the

relative temporal coordination of the measurements. If a track manager were

to fuse measurements that were taken over a wide range of time, the resulting
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estimation could be quite poor. There are several reasons why a measurement

may be returned that cannot be temporally associated with measurements from

other sensors. One reason is delays and loss introduced by the communica-

tions. For example, if the commitment request from the track manager never

gets to the sensor, no measurement will be taken. Another reason is unresolved

resource contention within the individual sensors. If, for example, one of the

sensors decides to delay the start of a measurement in order to deconflict its

internal schedule, it will be harder to match the resulting measurement with

data from other sensors.

Within our system, temporal association maintained by queuing measure-

ments for a finite period and matching them with one another based on their

actual measurement time. We make the assumption that the computers control-

ling the sensors are time synchronized using a Network Time Protocol (NTP)

like mechanism.

Target association, as the name implies, tries to match measurements with

targets. Consider the case of two targets, T1 and T2, that are following one

another through the sensor field. Now imagine that T1 moves out of the viewable

area of one of the sensor heads being used to measure it and T2 moves into its

this head’s view. If a measurement is taken by that head before the T1’s track

manager changes its allocation, the resulting amplitude will be of the wrong

target. When this measurement is fused with the track of T1, it will appear to

be closer to T2 than before. Over time, if this pattern continues, the targets will

be indistinguishable from one another. In fact, T1 could end up being ignored

and both track managers could try to track T2.

To prevent this from happening, track managers check to ensure that each

measurement has a higher likelihood of belong to their target than others that

may be near to it. To do this, we exploit the view of the sector manager. Because

sector managers are periodically given estimated target locations for all of the

targets within their sector, it is easy for them to determine when two or more

track managers are likely to have a target association problem. When the sector

manager detects this possibility, it informs the appropriate track managers by

sending them the locations of the target that are close to them. This allows

the track managers to discard any measurement that was likely to have been

collected by a sensor viewing another target. If, for some reason, two track

managers do fuse their target into one, the sector manager can also recognize
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Figure 7: As the target moves to another sector, the track manager queries the

manager of the new sector.

this fact and inform one of the managers to stop tracking. This alleviates the

unnecessary resource contention created by having two track managers fight

over the same resources to track the same target.

If the data values returned are of high enough quality, and the agent deter-

mines those measurements were taken from the correct target, then they are

used to triangulate what the position of the target was at that time. This

data point is then added to the track, which itself is used as a predictive tool

when determining where the target is likely to be in the future. At this point

the track manager must again decide which agents are needed and where they

should scan, and the sequence of activities is repeated.

Partitioning the environment reduces the amount of information and pro-

cessing that agents must perform for several different tasks. For example, gen-

erating a coherent scan schedule for a group of sensors is simplified by only

taking into account a tractable number of them. Similarly, when a new target

is detected as a result of a scan, that information can be sent to only the ap-

propriate sector manager, which can determine directly if it is a new or existing

target based on local information. Sectors also facilitate gathering data about

the sensors themselves, as track managers need only perform a single query to
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the appropriate sector manager to discover all the sensors available in within

that region (see figure 7). In fact, the partitioning makes nearly every aspect of

this solution scalable to arbitrary numbers, with the exception of the tracking

allocation, which has its own solution to this problem, as shown later. As a side

effect, partitioning does reduce the system’s reactivity, because an extra step

may be required to fetch information that is not available locally. We cope with

this problem wherever possible by caching such data to avoid redundant queries,

and by assigning new roles whenever possible to agents which have served that

same role in the past, to take advantage of that cached data.

Although not required in the scenarios presented in this article, it is interest-

ing to note the applicability of this organization to situations where agents have

an additional limitation or attenuation of communication capability based on

the geographic distance separating the participants. In this case, this partitioned

organization could serve as the basis of an ad-hoc network, where messages are

routed from one sector to the next, using the organizational structure as a guide,

until they reach their destination. This further emphasizes the notion that “lo-

cal” communication is more efficient, and the locality of information should be

exploited by the organization to take advantage of it.

In this section we have shown how the organization plays a critical role

in ensuring that information flowing within the sensor network is managed to

both minimize the delay and expensive of communication and to maximize its

availability for effective decision making. The next section describes some of

the mechanisms that go into forming the agent level control of the sensors.

4 Agent Architecture

4.1 Soft Real-Time Control

The Soft Real-Time Control Architecture (SRTA), the agent control engine used

by this solution, provides several key features to the agents within our sensor

network:

1. The ability to quickly generate plans and schedules for goals that are

appropriate for the available resources and applicable constraints, such as

deadlines and earliest start times.
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Figure 8: The soft real-time control architecture.

2. The ability to merge new goals with existing ones, and multiplex their

solution schedules.

3. The ability to use explicit representations of uncertainty and efficiently

handle deviations in expected plan behavior that arise out of variations in

resource usage patterns and unexpected action characteristics.

Abstractly, SRTA (shown in Figure 8) operates as a single functional unit

within an agent, which itself is running on a conventional (i.e. not real-time)

operating system. The SRTA controller is designed to be used in a layered

architecture, occupying a position below the high-level reasoning component in

an agent. In this role, it accepts new goals, report the results of the activities

used to satisfy those goals, and also serve as a knowledge source about the

potential ability to schedule future activities by answering what-if style queries.

The components that comprise SRTA assume a majority of the responsibility

needed to satisfy goals, which allows the high-level reasoning system to focus

on goal selection, determining goal objectives and other potentially domain-
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dependent issues. For example, agents may elect to coordinate using abstrac-

tions of their activities or resource allocations which are then locally translated

into a precise schedule [4]. SRTA can then use these schedules to both enforce

the semantics of the commitments which were generated, and automatically

attempt to resolve conflicts that were not addressed through coordination.

In the rest of this section, TÆMS, the modeling language used to describe

goals to SRTA, is explained. Following that, we will show how the components

of the SRTA architecture work together to provide the agents with the ability

to handle multiple, concurrently executing goals. Lastly, we will describe a

specialized component, called the Periodic Task Controller (PTC). The PTC

provides SPAM with an abstract view of the current resource schedule which it

uses as a basis for mediation.

4.2 TÆMS

TÆMS, the Task Analysis, Environmental Modeling and Simulation language, is

used to quantitatively describe the alternative ways a goal can be achieved [10].

A TÆMS task structure is essentially an annotated task decomposition tree.

The highest level nodes in the tree, called task groups, represent goals that

an agent may try to achieve. For example, the goal of the structure shown in

Figure 9 is Setup-Hardware. Below a task group there will be a set of tasks

and methods which describe how that task group may be performed, including

sequencing information over subtasks, data flow relationships and mandatory

versus optional tasks. Tasks represent sub-goals, which can be further decom-

posed in the same manner. Setup-Hardware, for instance, can be performed by

completing Startup, Init, and Obtain-Background-Noise.

Methods, on the other hand, are terminal, and represent the primitive ac-

tions an agent can perform. Methods are quantitatively described, in terms

of their expected quality, cost and duration. Activate-Sector 0, then, would

be described with its expected duration and quality, allowing the scheduling

and planning processes to reason about the effects of selecting this method for

execution. The quality accumulation function (QAF) below a task describes

how the quality of its subtasks is combined to calculate the task’s quality. For

example, the q min QAF below Init specifies that the quality of Init will be

the minimum quality of its subtasks - so all the subtasks must be successfully

performed for the Init task to succeed. Interactions between methods, tasks,
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Figure 9: An abbreviated view of the sensor initialization TÆMS task structure.

and affected resources are also quantitatively described. The curved lines in

Figure 9 represent resource interactions, describing, for instance, the produces

and consumes effects method Set-Sample-Size has on the resource SensLock,

and how the level of SensLock can limit the performance of the method.

TÆMS structures are used by our agents to describe how particular goals

may be achieved. Rather than hard coding, for instance, the task of initializing

the sensor, we encode the various steps in a TÆMS structure similar to that

shown in Figure 9. This simplifies the process of evaluating the alternative

pathways by allowing the designer to work at a higher level of abstraction, rather

than be distracted by how it can be implemented in code. More importantly,

it also provides a complete, quantitative view that can be reasoned about by

planning, scheduling and execution processes. A given task structure begins its

existence when it is created, read in from a library (Figure 8-1), or dynamically

instantiated from a template at runtime. Planning elements are involved both in

the generation of the structure, and then in the selection of the most appropriate

sequence of methods from that structure which should be performed to achieve

the goal given the currently available resources. This sequence is then used by a

scheduling process to determine the correct order of execution, with respect to

such things as precedence constraints and resource usage. Finally, this schedule

will be used by an execution process to perform the specified actions, the results

of which are written back to the original task structure.

The schedules produced by individual TÆMS structures are the building

blocks for an agent’s overall schedule of execution. A valid schedule completely

describing an agent’s activities will allow it to correctly reason about and act

upon the deadlines and constraints that it will encounter, for example a resource

restriction. Typically, however, schedules are only used to describe lower-level

activity. In this domain, this encompasses sensor initialization, scanning and
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tracking activity, data fusion and the like.

4.3 Scheduling

In the SRTA architecture, we have attempted to make the scheduling and plan-

ning process incremental and compartmentalized. New goals can be added

piecemeal to the execution schedule, without the need to re-plan all the agent’s

activities, and exceptions can be typically handled through changes to only a

small subset of the schedule. Figure 8 shows the organization of SRTA. In this

architecture, goals can arrive at any time, in response to environmental change,

local planning, or because of requests from another agents. The goal is used

by the problem solving component to generate a TÆMS task structure, which

quantitatively describes the alternative ways that goal may be achieved. The

TÆMS structure can be generated in a variety of ways; in our case we use a

TÆMS “template” library, which we use to dynamically instantiate and charac-

terize structures to meet current conditions. Other options include generating

the structure directly in code, or making use of an approximate base structure

and then employing learning techniques to refine it over time.

SRTA uses the Design-To-Criteria component [11] to generate linear plans

solving the goal described in the TÆMS structure (Figure 8-2). It employs a

battery of techniques to efficiently discover and reason about the various activity

schedules which can address that goal. The ability to make trade-offs while re-

specting commitments is particularly important, as DTC attempts to select the

quantitatively “best” plan which meets the specified requirements. DTC uses

criteria such as potential deadlines, minimum quality, external commitments,

and soft and hard action interrelationships to select an appropriate sequence of

activities.

The resulting plan is used to build a partially ordered schedule, which uses

structural details of the TÆMS structure to determine precedence constraints

and search for actions which can be performed in parallel (Figure 8-3). The

partial order scheduler (POS) also provides the ability to quickly shift methods’

execution order at any point in time instead of performing costly re-planning [5].

In a real-time environment, schedule adjustments are more frequent; by not

imposing unnecessary ordering constraints on our agent’s schedule the agent

has a better chance of achieving the time, cost and quality criteria of its goal.

A pair of specialized components are used to assist the POS during this final
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scheduling phase. The first, a resource modeling component, is used to ensure

that resource constraints are respected (Figure 8-4). A schedule merging module

then allows the partial order scheduler to incorporate the actions derived from

the new goal with existing schedules (Figure 8-5).

Our notion of “parallel” in this architecture includes activities which run

concurrently in parallel, as in a multiple processor environment, and those which

run virtually in parallel, as in a time-slicing, multi-processing operating system.

If we view the sensor as a specialized, separate processor, our task structures

contain both types of methods. For instance, a sensor measurement action can

take place concurrently with actions on the primary processor. Unifying these

notions simplifies the scheduling process, and can be represented appropriately

using TÆMS.

Once the schedule has been created, an execution module is responsible for

initiating the various actions in the schedule (Figure 8-6). It also keeps track

of execution performance and the state of actions’ preconditions, potentially re-

invoking the partial order scheduler when failed expectations require it. Using

the ordering constraints described in the schedule, the execution component

can directly determine which methods can be run concurrently. By overlapping

their execution, we reduce the total execution time, which effectively increases

the agents overall work capacity. The gain in execution time, and resulting

flexibility, is used to address resource availability, in addition to improving the

likelihood the scheduler can accommodate real-time changes without breaking

deadline constraints.

If this is unsuccessful, a conflict resolution module is used to reason about

mutually-exclusive tasks and commitments, determining the best way to handle

conflicts (Figure 8-7). Repairs can be accomplished in a variety of ways, for

instance, by relaxing constraints such as the goal completion criteria or delay-

ing its deadline, completing a substitute goal with different characteristics, or

decommiting from a lower priority goal or the goal causing the failure.

The execution characteristics of the SRTA architecture as a whole depend

largely on the frequency and complexity of the goals it is asked to plan and

schedule. On average, we observe cycle times of between 50 and 100 milliseconds

on 400 MHz x86-based systems, although this can jump to a half-second or more

if a particularly complex situation arises. A cycle represents a single pass of the

SRTA engine analyzing the current goals and executing methods. Because the
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system runs on a conventional operating system (Linux in this case), competing

external processes may add an additional level of performance uncertainty.

4.4 Periodic Tasks

In addition to the general purpose scheduling outlined above, the agents also in-

corporate a more specialized periodic scheduling mechanism. In order to reduce

communication, commitments between agents can be expressed as tasks which

are to be performed periodically and indefinitely until notified otherwise. To

reduce computation, these periodic tasks are arranged and scheduled according

to a slot-based scheme, where a given task will be assigned to run in one or more

slots in a repeating cycle. For example, in this architecture a cycle consists of

three slots, each of which has a length of one second, for a total cycle time of

three seconds. Then, elements of a commitment might specify that a scan or

track measurement should be performed indefinitely on sensor head 1 in slot 2.

A subsequent message would indicate when to stop performing the task. Using

this technique, a pair of messages can cause a large amount of data to be gath-

ered, and the required local scheduling overhead is reduced by abstracting the

continuous timeline into discrete independent portions.

Like any scheduling process, conflicts can arise when two tasks are to be

performed in the same slot. Different resolution techniques are used to cope

with this situation. Individual tasks have priorities associated with them -

for example, tracking tasks are more important than scanning tasks, and as

mentioned previously, some tracking tasks may be more important than others.

These priorities can be used to give preference to certain tasks. If a task is

preempted, it may either be suspended for the lifetime of the higher priority task,

or shifted to a free time slot if one is available. Alternately, if two tasks have

the same priority, the scheduler will attempt to divide the slot between them, so

that the first will run during one cycle, the second during the subsequent cycle,

then the first, and so on. A third technique, not used in this domain, could also

attempt to perform both tasks in the same slot if sufficient time, or a shorter

duration alternative, exists to do so.

In this section, we described the SRTA architecture and showed how it is used

within our system to provide the agents with autonomous reasoning capabilities.

These capabilities are exploited to both reduce communications, by allowing

agents to transmit control information in an abstract manner, and to provide
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Figure 10: Utility of taking a single, coordinated measurement from a set of

sensors.

tolerance to rapid environmental changes, by allowing agent to re-plan and re-

schedule reactively based on local information. The next section of this article

describes the SPAM resource allocation protocol which provides this system

with the ability to handle resource conflicts by elevating the decision making to

the track managers.

5 Resource Allocation

5.1 Tracking as Resource Allocation

Modeling the target tracking domain as a resource allocation problem is fairly

straightforward. Each of the targets in the environment can be considered a

task, which is assigned to a track manager. The sensors are the resources and

the job of the track managers is to obtain enough sensing time from the correct

sensors to track their targets.

There are a number of characteristics about this particular resource alloca-

tion problem that make it challenging. The first is that, although this problem

can be solved crudely using constraint satisfaction techniques, it lends itself

most naturally to being solved using some type of optimization. Optimization

is a good fit for two reasons. The first is that the value of a sensor platform

to a track manager is directly correlated with the distance and relative angle of

its most appropriate sensor head to the manager’s target. Increasing the angle

or distance decreases the accuracy and the resulting value of a measurement.

In addition, increasing the number of sensors involved in taking coordinated
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measurements improves the accuracy of the resulting location estimation (see

figure 10). The goal of the track managers, therefore, is not simply to come up

with a conflict free resource assignment, but to derive a solution that maximizes

the number and the value of the sensors used to track the targets.

The second major difficulty is the need to temporally coordinate the actions

of the sensors. Coordinating the resources in this way adds another dimension to

the problem and increases its difficulty considerably. The biggest problem with

temporal coordination is that time is a continuous value. There are essentially

an infinite number of possible combinations to consider when trying to deconflict

and coordinate the sensor schedules. As mentioned in the previous section, the

method used in this system to reduce the number of possible combinations is

to use a finite planning horizon on a slot based schedule. By using temporally

coordinated slots, the track managers lose the ability to perform fine-grained

scheduling, but the overall complexity of the resource allocation is decreased.

So, in fact, the track managers not only have to maximize the number and

value of the sensors, but have to maximize the amount of time those sensors are

dedicated to taking measurements for their target.

If we say that M i
s is the set of good sensors measurements (can see the

target) leading to the positional estimate in a single slot s for a task i, and

Util(M i
s) is defined as the utility function in Figure 10 then the utility function

for that task during a specific period is:

Ui(ai) =
k

∑

s=1

Util(M i
s)

Fortunately, the need for coordination actually allow us to consider a much

smaller subset of the possible allocations for a given task. In fact, track managers

within our system use a simplified set of objective levels defined by their utility

functions to assign resources to their targets. Each objective level is expressed

as a cross product Dm × Ds denoting the number for sensors, desired for a

number of slots in the planning horizon. For example, a track manager may

wish to have three sensors for two slots, which is denoted 3 × 2. Although the

number of slots in a period is variable, for this domain, we typically set it to

match the number of sensor heads on each platform, which is three. In order

to prevent certain targets from being ignored in order to improve the quality

of another targets estimate, track managers are penalized for not triangulating

their target during a full period.
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The third characteristic of interest is the dynamic nature of the problem. As

the targets move through the environment, moving in and out of the range of the

sensors, the underlying resource allocation problem changes in structure. This

drives the need to constantly monitor, re-evaluate, and reallocate the sensors

used to measure the positions of the targets. It also means that any method

used to allocate the resources has to be responsive to changes that occur in the

middle of the allocation process.

The last major challenge is that the allocation technique needs to be re-

source aware. As mentioned in Section 2, the communications infrastructure

is RF-based, which in this case makes it is very slow and unreliable. These

properties make it essential to not only limit the amount of communications,

but to be aware of and adapt to changes in the overall ability to communicate.

For example, if it is taking a long time to get messages to a particular track

manager, it probably makes sense to avoid creating conflicts with it. Also, if a

particular allocation is only useful for a very short period of time, it may not

make sense to engage in a complex reallocation process when a simpler one may

meet the basic need to track.

5.2 The SPAM Protocol

Scalable, Periodic, Anytime Mediation (SPAM) algorithm is built around the

principle of “good enough, fast enough”. As such, the protocol is actually

divided into two major stages. Stage 1 of the protocol uses local information

to derive and bind temporary solutions that are seldom free of conflict and

are often based on inaccurate, incomplete information. Stage 2 of the protocol

solves conflicts and distributes resources by initiating a cooperative mediation

session. During a mediation session, one of the track managers takes on the role

of mediator. As the mediator, it gathers information from track managers that

are in conflict, computes and recommends possible solutions to the problem,

and then announces a final solution.

The SPAM protocol is activated under two conditions. The first condition

is occurs when the resources needed to track a target change due to a target’s

movement. These types of changes often alter the structure of the underlying

optimization problem. As such, whenever they occur, managers instantiate the

first stage of the protocol to quickly modify their current solution or to create an

initial solution in the case of a new target assignment. Once stage 1 completes,
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a manager can choose to begin a mediation session if they determine that the

benefits outweigh the costs.

The second case occurs when a manager detects a conflict within one of the

resources its using. This type of conflict is caused when another manager is

unable to mediate a session, is able to mediate but due to latency has not yet

begun it, or is unaware that the resource is already being used. In each of these

cases, the manager detecting the conflict has the option to immediately activate

stage 2 and mediate a session to repair it. A distributed locking mechanism

prevents more than one manager from concurrently mediating if latency was

the cause of the conflict detection.

5.3 Stage 1

Stage 1 of SPAM serves three primary functions. The first function is to attempt

to find a solution within the context of the information that the protocol has

when it starts up. Like the Asynchronous Weak Commitment (AWC) proto-

col [12], each of the agents tries to find an assignment that is consistent with its

potentially incomplete or inconsistent agent view. However, because this proto-

col attempts to maximize the social utility, each of the agents tries to maximize

their local utility without causing new constraint violations. If this can be done,

then no further mediation is necessary, and the protocol terminates at the end

of stage 1.

We should mention that a trade-off exists between communication overhead

and utility, due to the initial selections of the objective level in stage 1. If

each of the managers chooses to use every available resource (sensors able to

see their target), the possibility for contention over resources greatly increases

in the environment, thereby causing the execution of stage 2 to occur more

frequently. However, if the agents decide to start with at a lower objective level

(and correspondingly less utility), the social utility may suffer unnecessarily.

Stage 1 has what we refer to as a concession rate. The concession rate de-

fines what percentage of the local solution quality a track manager is willing

to concede to find a violation-free solution in an attempt to avoid a potentially

expensive stage 2 mediation session. So, as the manager’s utility drops, the

amount they are willing to concede drops as well. This causes managers to me-

diate (Stage 2) more frequently in critically constrained tracking environments.

The second function of stage 1 is to ensure some utility is obtained while
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waiting for stage 2 to complete. Since these temporarily applied solutions are

only applied when a completely conflict-free assignment is not possible, unre-

solved conflict are left to the individual sensor agents to handle. As mentioned

in the previous section, sensor agents can use one of a number of techniques,

including slot boundary shifting, less expensive measurement types, or task ro-

tation, in order to resolve such conflicts. To the track manager, whether or not

they get a measurement from a conflicted sensors is probabilistically random.

Temporarily applied solutions do not use the concession rate. In fact, be-

cause of environmental changes and the probabilistic nature of getting measure-

ments from conflicted sensors, managers always use their maximum possible

objective level (within the bounds of the number of sensors that can see the tar-

get). The reason for this is rather subtle, but important. Let’s say that a new

resource were added to the possible resources that could be used by manager

T1. Let’s also say that another manager, T2, who has more than enough avail-

able resources to itself, were using that entire resource. If T1 starts a mediation

at that lower level, it can never obtain its highest level as a result of the ses-

sion, even though a solution exists where T2 just gives up the entire conflicted

resource.

The third purpose of stage 1 relates to the anytime characteristics of the

protocol. Because a solution is always derived and applied during stage 1,

managers don’t necessarily have to enter stage 2. They can stop the process

at the end of stage 1 and accept the results that they have achieved. This is

often done if a target’s movement causes the resource needs to change faster

than the expected time it would take to complete stage 2. The expected time

to complete stage 2 is computed based on both previous experience and the

current estimated channel loads for the track managers that would be in the

mediation session..

5.4 Stage 2

Stage 2 is the heart of the SPAM protocol (See Figure 11). Stage 2 attempts to

resolve all of the local conflicts a track manager has by elevating the problem

to the track managers that are using the desired resources. To do this, the

originating track manager takes the role of the mediator (note that multiple

sessions can occur in parallel in the environment). As the mediator, it becomes

responsible for gathering all of the information needed to generate alternative
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Figure 11: Stage 2 of the SPAM protocol.
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solutions, creating solutions which may involve changes to the objective levels of

the managers involved, and finally choosing a solution to apply to the problem.

These solutions are generated without full global information and may lead to

newly introduced non-local conflict. If this occurs, other track managers can

begin sessions which propagates the conflict even further.

The best way to explain the operation of stage 2 is through an example.

Consider Figure 12, which depicts a commonly encountered form of contention.

Here, track manager T2 has just been assigned a target. The target is located

between two existing targets that are being tracked by track managers T1 and

T3. This creates contention for sensors S3, S4, S5, and S6.

Following the protocol for the example in Figure 12, track manager T2, as the

originator of the conflict, takes on the role of mediator. It begins the mediation

session by requesting information from each of the track managers involved in

the resource conflict. Upon receiving the request, each track managers replies

with their current objective level, the number of sensors which can see their

target, the names of the sensors that are in direct conflict with the mediator,

and any additional conflicts that the manager has. To continue our example,

T2 sends a request for information to T1 and T3. T1 and T3 both return that

they have 4 sensors that can track their targets, the list of sensors that are in

direct conflict (i.e T 1(S3, S4), T 3(S5, S6)) their objective level (4×3 for both of

them) and that they have no additional conflicts outside of the immediate one

being considered.

As seen in Figure 11, T2 enters a loop that attempts to generate solutions

followed by lowering the objective level of one of the track managers if none exist.

A heuristic method, designed to balance the resources, is used to choose the

track manager to lower. Namely, the track manager is chosen that has both the

highest objective level and is unable to support it without using resources from

the set of sensors being mediated over. Whenever two or more managers have

the same highest objective level, we choose to lower the objective level of the

manager with the least amount of external conflict. By doing this, it is our belief

that track managers with more external conflict will maintain higher objective

levels, which provides them with leverage in resolving subsequent conflicts that

may be occur as a result of propagation.

You should note that although this has similarities to the techniques used in

Partial Constraint Satisfaction (PCSP)s, this differs in that the problem changes
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Figure 12: Example of a common contention for resources. Track manager T2

has just been assigned a target and contention is created for sensors S3, S4, S5

and S6.

as the objective levels are changed. PCSP techniques, such as [13] choose to

satisfy some subset of the constraints, this technique changes the constraints

themselves until the problem is satisfiable.

The solution generation loop is terminated under one of two conditions.

First, if given the current objective levels for each of the track mangers, the

mediator is able to generate at least one satisfying assignment, the session enters

the solution evaluation phase. Second, the session ends if the mediator cannot

generate a satisfying assignment and it cannot drop the objective level of one

of the track managers in the session. Under these conditions, the session is

terminated and the mediator lowers its own objective level to the lowest possible

level, conceding that it cannot find a satisfying assignment, and binds a solution

which minimizes the number of conflicts.

Continuing our example, T2 first lowers the objective level of T1 (choos-

ing T1 at random because they all have equal external conflict). No satisfying

assignments are possible under the new set of objective levels, so the loop con-

tinues. It continues, in fact, until each of the track managers has an objective

level of 3 × 2 at which time T2 is able generate a set of 216 satisfying assign-

ments to the problem. More information on the solution generation process can

be found in [4].

During solution evaluation, the mediator proposes the set of solutions to

each track managers by sending them a list of sensor assignments that occur in

at least one solution. Because each of these assignments is part of a solution,

each the lists have the important property that they are arc-consistent with the

lists being transmitted to the other managers in the session. In addition, the

mediating track manager is guaranteed to have a conflict-free sensor assignment

whenever it successfully concludes a session.

Upon receiving their list, each of track managers rates the assignments based
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on their local agent view and their internal utility functions. Continuing our ex-

ample, T2 sends a list of assignments to T1, a list of assignments to itself, and

a list of assignments to T3. In our system, track managers rank the assign-

ments based a utility function that includes the amount of conflict that will

be introduced by taking the assignment and on the desirability of the sensors.

This is similar to the min-conflict heuristic [14] and is an integral part of the

hill-climbing nature of the algorithm.

Once the mediator has the ratings from the track managers, it chooses a

particular solution to apply to the problem. This is done using a dynamic

priority method based on the number of constraints each of the managers has

external to the mediation, a form of meta-level information. The basic notion

is similar to the priority order changes in AWC [12]; try to find the task which

is most heavily constrained and elevate it in the orders. Our impression is that

this helps stem the propagation because it leaves the most constrained tasks

with the best choices. This allows those managers to maintain violation-free

solutions if they exist in the alternatives presented to them.

In our example, T2 collects the ordering from T1, T2, and T3. T3 is given

first choice. By its ordering, it ranked alternative 0 the highest. This restricts

the choice for T2 to alternatives 0, 1, 2, and 3. T2 ranked 0 highest from this set

of alternatives, restricting T1’s choice to its 0th, 1st, and 2nd alternatives. It

turns out that T1 likes its 0th solution the best so the final solution is composed

of T3’s alternative 0, T2’s alternative 0, and T1’s alternative 0.

The last phase of the protocol is the solution implementation phase. Here,

the mediator simply informs each of the track managers of its final choice. Each

of the track managers then implements the final solution. At this point, each

of the track managers is free to propagate and mediate if it chooses. Figure 13

shows the configuration of the sensors before and after T2 completes stage 2.

This section described the Scalable, Periodic, Anytime Mediation (SPAM)

protocol. This protocol uses cooperative mediation to solve a dynamic, dis-

tributed optimization problem. The next section, presents results from experi-

mentation that was done in simulation and later verified with hardware.
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Figure 13: A solution derived by SPAM to the problem in Figure 12. The table

on the left is before track manager T2 mediates over T1 and T3. The table on

the left is the result of stage 2.

Figure 14: Radsim environment with 8 sensor nodes (S1-S8) and 4 targets (M1-

M4).
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6 Results

6.1 Resource Allocation

A distributed sensor network environment lends itself to many different types of

metrics. The most obvious is the accuracy of the tracking process, as determin-

ing accurate positions for the various targets is arguably the point of the system.

In a conventional, unified system this would be the case, however, because the

tracking component of this solution was a black box developed by a third party,

we instead focus our attention on the number and relative coordination of the

measurements being taken for each of the targets.

To test the effectiveness of SRTA and SPAM, we used a simulation tool,

called Radsim (see Lawton in [3]), that very closely models the target tracking

environment and sensor hardware. Radsim simulates the behavior of one or

more targets that have defined paths through the environment. Agents connect

to Radsim and use a standard API to send control signals to their respective

sensor platforms. Radsim, in turn, uses a model of the platforms’ behavior to

return, in the case of taking a measurement, a hypothetical value for amplitude

and frequency based on the current locations of the targets.

We conducted 400 experimental runs, each 3 minutes long, using the envi-

ronment in Figure 14 consisting of 8 sensors and between 1 and 4 mobile targets.

The paths of the targets and the layout of the sensors were chosen to maximize

contention with minimal possibility of target ambiguity, thus creating a need for

proper sensor allocation to effectively track. We analyzed three resource man-

agement techniques, comparing them based on their average periodic utility (see

section 5.1) during the course of the scenario.

The first and simplest allocation process, single commitment, specifies that

each sensor can work on only one commitment at a time. New commitments ac-

cepted by a sensor override any existing ones. In the second set of experiments,

agents use SRTA to work on multiple commitments, but only local conflict

resolution strategies are employed. In this case, the periodic task controller

is responsible for managing conflicted commitments as best it can. The third

strategy uses the SPAM + SRTA allocation style which represents the full solu-

tion presented earlier in this article. Commitments are generated, and existing

initial conflicts are resolved locally using SRTA. SPAM then attempts to resolve

these conflicts through more intelligent allocation of the sensor resources.
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Figure 15: Average utility for a period for three allocation techniques under

various conditions.

As seen in Figure 15, when there is only one target, all three of the methods

do equally well, because there is no contention for the sensors. The score of

about 2.6 stems from the fact that the target, over the course of its movement,

enters regions where sensor coverage is limited to just 2 sensors. During these

periods, the score becomes -1, lowering the overall average for the track.

As the number of targets increase, resource contention becomes more signifi-

cantand the differences between the methods becomes clear. For two targets, the

single commitment strategy essentially ignores one of the targets whenever con-

tention for the sensors occurs. The SRTA-only strategy has better performance

than the single commitment strategy because, although it does not produce a

conflict free solution, the local agents are able to occasionally get coordinated

measurements. Because this happens essentially as a random event, however,

this strategy results in a relatively high standard deviation among scenarios.

The SPAM + SRTA strategy clearly does better on average and also has a very

small standard deviation. This indicates that in most instances, SPAM is able

to resolve the conflict and maintain coordination between the sensors.

As the number of targets increases above two, the differences become more

apparent. By four targets (which is highly over constrained), the SRTA only

method does no better than single commitment. This is caused by the effects of

random coordination of measurements from the sensors causing one or more of

the targets to be ignored for most of the scenario. SPAM + SRTA also degrades

but the average stays very close to 1 indicating that most of the time, all of the
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Figure 16: The effects of sector size on tracking quality with ideal communica-

tions.

targets are being tracked to some degree.

6.2 Effects of Sector Size

We also conducted a number tests to understand the effect sector sizes on track-

ing accuracy. In these experiments, a group of 36 sensors were organized into

between 1 and 36 equal-sized sectors. Four targets were introduced into the

environment and the average tracking accuracy was measured for fixed dura-

tion of time. These tests were conducted using ideal communication conditions,

i.e. no message loss or congestion effects. As you can see in Figure 16, as you

increase the number of agents within a single sector, the RMS error and its

variance goes down. As can been seen in Figure 17 this effect can be partially

attributed to an increase in the number of sensor measurements being received

by the track managers and partially caused by the a reduced delay in receiving

sensor information from the sector manager as the target moves through the en-

vironment. Again, these results do not take into account the effects of message

congestion. If these tests had been conducted using the RF-based system, the

effects of centralizing too much information and processing would have become

apparent as the number of agents per sector increases. As seen in figure 4, his

can cause excessive load in particular agents.
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Figure 17: The effects of sector size on various messages being communicated.

Figure 18: Researchers work on a demonstration involving 36 sensors and 3

mobile targets.
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6.3 Hardware Evaluation

A fair amount of testing was also done during several hardware-based evalua-

tions (see Figure 18). In these evaluations, sensors were placed in an environ-

ment which had a fixed number of model trains, acting as the targets, moving

through it. The goal of the evaluation was to track the trains with the high-

est possible quality while minimizing the amount of communication being used.

The results of these tests were mixed. Although our system proved to be very

robust, it had difficulty maintaining cohesive tracks for long periods of time.

There are a number of factors which caused this to occur. At the lowest level,

the raw sensor data proved to be quite poor due to the effects of multi-pathing,

poor calibration, and equipment failure. These low-level difficulties caused false

target detections and large amounts of uncertainty in estimating the targets’

locations and velocities. Compounding the problem is the closed loop nature

of target tracking. Since location estimates are used to select sensors, poor es-

timates lead to improper selection which potentially reduces the quality of the

next estimate due to unnecessary increases in resource contention and target

association problems. In the end, the track managers lost their targets which

were later re-detected and tracked again. Post-processing of the data collected

during these experiments showed the agents performed the correct actions given

the projections they were provided by the underlying tracking components. This

supports the claim that the results derived in simulation are represenative of the

behavior we would expect with components that provided more reliable data.

7 Conclusions

In this paper we have described our solution to a real-time distributed tracking

problem. The agents in the environment are first organized by partitioning

them into sectors, reducing the level of potential interaction between agents.

Within each sector, agents dynamically specialize to address scanning, tracking,

or other goals, which are instantiated as task structures for use by the SRTA

control architecture. These elements exist to support resource allocation, which

is directly effected through the use of the SPAM negotiation protocol. The

agent problem solving component first discovers and generates commitments

for sensors to use for gathering data, then determines if conflicts exist with that

allocation, finally using arbitration and relaxation strategies to resolve such
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conflicts. We have empirically tested and evaluated these techniques in both

the Radsim simulation environment and using a hardware-based system.

Despite the fact that many of the details of our solution were designed for

the distributed sensor net problem, much of the higher-level architecture is

quite general, and applicable to different problems. SRTA, for instance, uses

the domain-independent TÆMSlanguage as its basis, which can and has been

used successfully in a variety of domains. The SPAM negotiation protocol can

be used to solve new distributed, interdependent resource allocation problems

by implementing a suitable objective function. SPAM’s technique of allow-

ing conflicts to exist and be resolved by local control concurrent with a more

complete allocation search can be used in nearly any environment where the

participants are tolerant of such uncertainty. Our organizational structure as

a whole is quite specific, but individual aspects such as partitioning, task mi-

gration and local control are general and applicable to a variety of different

distributed architectures.

Our solution as described covers many different aspects of the distributed

sensor interpretation problem including uncertainty, target association, and re-

source allocation. Despite this, there remain parts of the domain which we

have not yet explored that seem to offer additional possibility for intellectual

contribution. For example, while the sensors in this environment had several

different modes of operation with different execution characteristics, in practice

it rarely if ever made sense to use anything but the cheapest, fastest measure-

ment type. In addition, the sensor population as a whole was discriminated only

by location and orientation, and not by differing capabilities or qualities. If the

sensors were more heterogeneous, or if they offered a range of useful modes of

operation, it would offer the opportunity for a richer reasoning process. Agents

would need to determine not only which sensors to use, but which modes they

should operate in, and which functionalities should be exploited, and to trade

off these choices against the additional costs they would likely incur. Related to

sensor heterogeneity, the ability discriminate among targets also presents a new

dimension in which to reason. If targets were identifiable, and correlated with

either known characteristics or expected routes, this information would allow

agents the possibility of a more effective tracking procedure by exploiting such

knowledge. As mentioned earlier, the notion of distance-attenuated communi-

cation could also create an interesting environment, requiring agents to more
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directly reason about the consequences of long-distance agent relationships.
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A Figure Captions

Figure 1: High-level architecture. A: sectorization of the environment, B: dis-

tribution of the scan schedule, C: communicating over tracking measure-

ments, and D: fusion of tracking data.

Figure 2: The sensor platforms have three Doppler radar sensor heads and are

controlled by a BASIC stamp micro-controller.

Figure 3: Total number of messages for 36 agents tracking 4 targets given vari-

ous sector sizes.

Figure 4: Communication load disparity among agents within each sector.

Figure 5: Overview of the agent’s organizational hierarchy, with some informa-

tion flows represented.

Figure 6: An abstraction of the messages and reasoning used for target detection

by sensor agents, sector and track managers.

Figure 7: As the target moves to another sector, the track manager queries the

manager of the new sector.

Figure 8: The soft real-time control architecture.

Figure 9: An abbreviated view of the sensor initialization TÆMS task structure.

Figure 10: Utility of taking a single, coordinated measurement from a set of

sensors.

Figure 11: Stage 2 of the SPAM protocol.

Figure 12: Example of a common contention for resources. Track manager T2

has just been assigned a target and contention is created for sensors S3,

S4, S5 and S6.

Figure 13: A solution derived by SPAM to the problem in Figure 12. The table

on the left is before track manager T2 mediates over T1 and T3. The

table on the left is the result of stage 2.

Figure 14: Radsim environment with 8 sensor nodes (S1-S8) and 4 targets (M1-

M4).
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Figure 15: Average utility for a period for three allocation techniques under

various conditions.

Figure 16: The effects of sector size on tracking quality with ideal communica-

tions.

Figure 17: The effects of sector size on various messages being communicated.

Figure 18: Researchers work on a demonstration involving 36 sensors and 3

mobile targets.
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ABSTRACT
We present a distributed approach to self-organization in a
distributed sensor network. The agents in the system use
a series of negotiations incrementally to form appropriate
coalitions of sensor and processing resources.

Since the system is cooperative, we have developed a range
of protocols that allow the agents to share meta-level in-
formation before they allocate resources. On one extreme
the protocols are based on local utility computations, where
each agent negotiates based on its local perspective. From
there, a continuum of additional protocols exists in which
agents base decisions on marginal social utility, the combi-
nation of an agent’s marginal utility and that of others. We
present a formal framework that allows us to quantify how
social an agent can be in terms of the set of agents that are
considered and how the choice of a certain level affects the
decisions made by the agents and the global utility of the
organization.

Our results show that by implementing social agents, we
obtain an organization with a high global utility both when
agents negotiate over complex contracts and when they ne-
gotiate over simple ones. The main difference between the
two cases is mainly the rate of convergence. Our algorithm
is incremental, and therefore the organization that evolves
can adapt and stabilize as agents enter and leave the system.
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1. INTRODUCTION
The process of self-organization in a large-scale, open sys-

tem is of key importance to the performance of the system
as a whole. An appropriate organization can limit control
and communication costs, significantly improving perfor-
mance. We have observed useful system performance with
an organization of as few as sixteen agents [3]. A static
organization, however, may not be able to handle a dy-
namic environment. Re-organization, therefore, is neces-
sary during operation as agents and resources are removed
or added, or when their characteristics change. In this pa-
per we present a distributed, incremental approach to self-
organization through bottom-up coalition formation that we
have applied to the distributed sensor network (DSN) of the
EW Challenge Problem [3]. The process uses negotiation
iteratively to enable managers of coalitions to refine the set
of coalitions in the system to achieve efficient allocations of
sensors and adapt dynamically to environmental changes.

Horling et al. [3] describe the EW Challenge Problem do-
main in detail. It consists of homogeneous sensor agents
distributed throughout a region. The agents are fixed and
communicate using an eight-channel RF system in which
each can use only one channel at a time. An organization
in such a domain helps facilitate the efficient assignment of
tracking tasks to particular agents and limit contention on
communication channels. We employ a one-level hierarchy
in which agents are distributively divided into sectors, each
of which has a manager. The manager monitors what is cur-
rently being tracked by its sector and, as new data arises,
determines whether it needs to assign a new tracking task to
an agent in its sector. To do this the manager must model
what is currently being tracked and the internal states of the
agents in its sector. Furthermore, when it assigns tracking
tasks, the manager attempts to minimize contention on any
one channel. Therefore, the division of the agents into sec-
tors helps to minimize not only the computational load on
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Figure 1: EWChallenge Domain

the managers but also the number of messages sent on any
one channel. For our self-organization techniques, we as-
sume all sector managers communicate with each other over
channel zero and that the sector managers assign channels
other than zero to agents as they enter the sector.

Figure 1 illustrates the domain. The empty circles are
sector managers; the filled circles are sensor agents that are
not managers. Although in actuality each agent has three
separate sensor heads, for the purposes of this paper we as-
sume agents have viewable areas of 360◦. The sector areas
represented by the “clouds” in the picture are defined by
the intersection of the viewable areas of the sensors in the
sectors. The areas of overlap show where the region covered
by one sector intersects the region covered by another. Al-
though sector boundaries overlap, each agent belongs to a
single sector. To track a vehicle best, at least three sensor
agents are required to triangulate the position of a vehicle
moving through the region. If there are not three such sen-
sors within the sector responsible for tracking, agents within
that sector may request sensor data from other sectors.

We also assume that there is an overhead associated with
passing a tracking task from one sector to another and that
accessing sensor data of agents in different sectors may incur
communication delays due to multiple hops or channel con-
tention. It is desirable, therefore, for a sector to track well
for as long as possible to minimize how often a tracking task
is passed off to another sector, how often a tracking agent
must access sensor data from different sectors, and how often
tracking agents must negotiate over sensor allocation.

Given the need for an organization such as that described
above, the motivation for applying self-organization tech-
niques is the need to move from predefined, hand-generated
configurations of sensors and organizational relationships
as in [3] to arbitrary configurations and dynamic construc-
tion of organizational structure. To achieve this, we use
a bottom-up coalition formation technique to enable the
agents in the system to construct the organization dynami-
cally in a decentralized manner.

Through coalition formation, agents in a large system
faced with a set of tasks partition themselves to maximize
system performance. By this process, the system moves
from being a set of single agents to a set of either disjoint

or overlapping coalitions of agents. Our algorithm enables
self-organization through coalition formation by having the
agents discover their organizational relationships while par-
titioning themselves around the subtasks of a high-level task.

Our approach is similar to that of Shehory and Kraus [9,
10] in that it applies to a cooperative system of agents in
a non-super-additive environment. We assume an overhead
associated with each new member of a coalition and that
a coalition reaches a point beyond which adding a mem-
ber is no longer beneficial. Beyond these similarities our
approach varies considerably from that of [9, 10]. In their
work agents have a more global view of others in the sys-
tem. The agents may not be aware of every other agent, but
the assumption is that they know of a large number. Each
agent then calculates a subset of the coalitions it may belong
to, and the system engages in a greedy process of choosing
coalitions based on their computed coalitional values. If the
population changes, the coalition formation process must
restart. In contrast, our approach is an incremental, local
one in which agents need not know of that many other agents
around them and the process of coalition formation can con-
tinue and adapt if the population changes. Another differ-
ence is that Shehory and Kraus [10] allow for overlapping
coalitions. In our current work, we restrict our attention to
disjoint coalitions although in future work, we plan to ex-
tend our techniques to overlapping coalitions where sensor
agents may have membership in more than one sector.

Two other sets of related work are [2] and [4]. While the
work of Horling et al. [2] does involve a local adaptation
process, it uses evaluations of system performance to adapt
an organization. Organizational adaptation in the work of
Ishida et al. [4] is based on the tasks that enter the system
and the system’s current load. It is not an iterative search
process designed to converge on a good organization. In
both sets of work the adaptations may be revised as the
situation changes, but the process of adapting is a single
shot. The Contract Net Protocol [11] is also related to our
work; we discuss it in Sections 3 and 4.

Finally, a common coalition formation problem related to
the distribution of tasks asks: Given a fixed set of tasks and
a set of cooperative agents, how can we pick groups of agents
best suited to those tasks? Our problem is slightly differ-
ent and resembles the work in Goldman and Rosenschein [1]
aimed at partitioning information domains to facilitate fu-
ture information retrieval requests. In our DSN, the system
is given the high-level task of providing coverage for a re-
gion. This task encompasses the future tracking tasks that
the system will perform but does not know a priori. The
goal is to subdivide the region and assign portions of it to
sectors (coalitions) of agents so that each sector is best able
to perform the tracking tasks that it encounters.

Sections 2 and 3 present our model. Section 4 describes
empirical results from testing different negotiation protocols
that lead to different stable organizations. Section 4, also
analyzes the performance of the organizations evolved in
terms of their rate of convergence, fault tolerance, and mes-
sage traffic while tracking. We conclude in Section 6 after
presenting a formal framework in Section 5 that allows us to
analyze the decisions that the agents make as a function of
the value of the information they hold. We distinguish be-
tween local information agents and k-social agents who may
be able to obtain information about k other transactions
happening at the same time.
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2. PROBLEM DESCRIPTION
In order to formalize our problem, we present the following

assumptions and definitions.

2.1 Assumptions
In addition to the assumptions stated in the Introduction,

we make the following assumptions:

• Although agents are arbitrarily distributed, there are a
sufficient number of them and they are arranged such
that every point in the region assigned to the system
has at least one sensor that can see it.

• Although agents may enter or leave the system at any
time, the agent population does not vary dramatically
from one instance to the next. If the population were
to fluctuate wildly, attempting to build organizational
structure would be futile.

• An ideal sector has between eight and ten agents in
it and at least three agents can see every point in the
region it is responsible for. As the first assumption
suggests, this is not always possible.

2.2 Definitions
At any time t we have a set of agents in the system,

A = {A1, A2, ...An}, and each agent Ai has a vector of ca-
pabilities B = {bi

1, bi
2, ..., b

i
n}. For example, in the sensor

domain presented, each agent controls the sensor associated
with it and the capabilities are the regions each is able to
cover.

Different organizations can result from a given set A of
agents with their corresponding capabilities. These orga-
nizations are instantiations of different organizational tem-
plates. An organizational template is given by the organiza-
tion’s high-level goals, the roles that exist within the orga-
nization, the organization’s control and communication hi-
erarchies, and its evaluation function. Our implementation
instantiates a simple template in which agent organizations
are built using a single level hierarchy.

A sector Si is a coalition of agents drawn from A that
work together to accomplish a task. A sector manager SM

is a representative of its sector that is responsible for han-
dling negotiations with other sectors (as well as task and
channel allocation within the sector). The manager may
not remain constant throughout the life of the sector. Since
the agents in A are homogeneous, any agent can serve as a
sector manager.

Each sector Si has an area defined by the viewable areas
of the sensor agents that it is responsible for as shown by the
“clouds” in Figure 1. We denote this as AreaSi

. Each sec-
tor has a utility value USi

that is a function of the number
of agents in the sector and how well the sector can provide
coverage of the sub-region it is responsible for. More specif-
ically, let ANi be the average number of sensors in Si that
can see each point in the region covered by Si. Let NUi be a
function ranging between 0 and 1 dependent on the number
of agents in Si. Space limitations preclude a complete de-
scription of NUi, but it is an empirically defined factor that
equals 1 if Si has eight sensors, falls off slowly at first so
that between 6 and 10 agents still gets a fairly high rating,
and then falls off quickly for sectors of other sizes. A sector
with only one agent, for instance, has NUi = 0.001. Finally,
USi

= ANi × NUi.

The coalition formation process results in a set of sectors
called a coalition structure [6] CS = {S1, S2, ..., Sm} where
Si is the ith sector in CS. A coalition structure’s global
utility is the sum of the utilities of the individual sectors in
it:

UCS =
X
iǫCS

USi

The coalition formation process decomposes a high-level
task T assigned to the system into subtasks {t1, t2, ..., tm}
which may overlap and are assigned to the different sec-
tors. In the sensor network, two coverage subtasks overlap
if AreaSi

∩AreaSj
6= ∅. Figure 1 shows that all three sectors

illustrated have areas of overlap.
Each agent is able to perform a portion of the subtask

assigned to its sector based on its capabilities. In the sensor
network example, an agent is able to provide partial coverage
of the region its sector is responsible for.

With the assumptions and definitions above, we can for-
mulate the self-organization problem as follows: Given a
high-level task T 1 and a set of agents A, subdivide T into
m subtasks {t1, t2, ..., tm} and A into a coalition structure
CS = {S1, S2, ..., Sm} of m sectors such that each of the
subtasks is assigned to one sector, where

S
Si = A, ∀i 6= j

Si ∩ Sj = ∅, and UCS is maximal.

2.3 Market Analogy Definitions
Because our approach involves an iterative negotiation

process, comparing the system to a marketplace is useful.
A buyer is a sector manager whose sector does not have
the necessary sensors to perform its subtask adequately. In
other words, the sensor agents that comprise the sector do
not provide sufficient coverage of the area for which the sec-
tor is responsible. A seller is a sector manager whose sector
has sensor agents able to provide coverage of a region the
buyer would like to cover. Sector managers can be buyers
and sellers simultaneously. The only agents involved in the
negotiations of this marketplace are sector managers.

The product in the sensor network is the ability to pro-
vide coverage for a certain region and is transfered from one
sector manager to another through the exchange of sensor
agents between sectors. The product is the resource the
buyer needs to improve its performance of its subtask. Fi-
nally, the value of a product to a buyer or seller is a function
of the buyer’s and the seller’s marginal utility gains from the
transaction and depends on the negotiation strategy they
are using. When determining with whom to transact, buyers
and sellers may consider either their own local marginal util-
ity gains or the social marginal utility. The local marginal
utility is the difference between a sector’s utility before a
transaction and the utility after the transaction. The social
marginal utility is the sum of the local marginal utilities
of both the buyer and the seller. In the local case, the buyer
and seller value products differently. In the social case, they
value products the same.2

With this analogy, the problem of bottom-up coalition
formation translates into deciding which sellers the buyers

1In our case the high-level task is to provide coverage for
the entire region.
2Although the analogy to a marketplace is useful, it is worth
noting that our system is indeed cooperative and, therefore,
agents may be willing to negotiate at the social level. This
is not reasonable in a competitive market.
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should attempt to buy from and which buyers the sellers
should sell their products to such that UCS is maximized.

3. NEGOTIATION STRATEGIES
A well-known strategy for assigning resources that has

also been used to organize a DSN is the Contract Net Pro-
tocol (CNET) [11]. CNET provides a general framework to
describe negotiation processes between agents. In its orig-
inal version it involved agents’ making decisions based on
each agent’s own perspective. For the DSN domain, an ex-
ample of how CNET enables agents to build an organization
is as follows: A task manager with a task to be fulfilled (such
as finding a sensor agent to provide signal data) broadcasts a
task announcement with a deadline for receiving bids. Just
before the deadline, agents capable of performing the task
send their bids to the manager who then evaluates the bids
and awards contracts appropriately. Once an agent receives
a contract, that agent is committed to it.

In our example, many agents may be able to provide cov-
erage for the same area, but assigning the task to different
agents may lead to different global utilities. In CNET each
task that is assigned by a task manager (at its highest ab-
straction level)3 was assumed to be independent of other
tasks, so that the order of processing tasks by different task
managers did not affect the global utility of the system.

We are interested in evaluating the performance of the
whole organization in terms of the agents’ decisions and the
structure that results from these decisions. We assume that
all agents are interested in maximizing the global utility of
the system and, therefore, require a negotiation protocol to
enable this. CNET in its original formulation is not suffi-
cient for this purpose. For example, assume agents A1 and
A2 are both able to cover a region that sector manager SM1

needs covered, but only A2 is able to cover a region SM2

needs covered. If SM1 awards a contract to A2, A2 may no
longer be available to SM2.

In order to correct for the above problem, we have de-
veloped two general classes of negotiation protocol for self-
organizing through coalition formation in the marketplace of
Section 2.3: local marginal utility based and social marginal
utility based.4 In our case, because agents negotiate, even if
A2 initially joins SM1, SM1 and SM2 may be able to adjust
the allocation of sensors to coalitions such that A2 moves to
SM2 and A1 joins SM1.

For an illustration of the dynamics of the protocols we
have developed, refer to Figure 2. In the local marginal
utility based protocols, a round of negotiation proceeds as
follows: A buyer broadcasts a message (1) requesting cov-
erage of a region. Each manager within range, who has an
agent that can cover that region and whose local marginal
utility of giving up the agent is positive, responds with a
message (2) stating that it could provide coverage to the
buyer. Unlike CNET, the seller is not bound to honor this
offer. The seller is free to make offers to as many buyers
that send requests as it likes.

The buyer waits for a period of time, collecting responses
from sellers. When the period is over, the buyer selects

3This task may be sub-contracted and its sub-parts are in-
deed dependent.
4The idea of negotiating over marginal utility is similar to
the TRACONET [8] extension of CNET in which bidding
and awarding decisions are based on marginal cost calcula-
tions.
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Figure 2: Negotiation Message Types

1. Buyers request. 2. Seller’s potential utility change. 3.
Buyer chooses seller. 4. Seller chooses buyer.

the seller whose product would provide the buyer with the
greatest local marginal utility gain and sends a message (3)
to that seller requesting the coverage offered.

Finally, given the multiple responses from buyers that the
seller receives, the seller chooses to give its product to the
buyer that maximizes the seller’s local utility (4).

Negotiation in the social case is slightly different. As in
the local case, the buyer sends its product request (1). This
time, however, the seller responds with an offer even if its
change in local utility would be negative and reports to the
buyer what its local utility change would be (2). The buyer
collects responses from sellers and chooses to request the
product it needs from the seller that maximizes the sum
of the buyer’s local marginal utility and the seller’s local
marginal utility assuming the sum is positive. The buyer
reports the sum (3) to the seller (i.e., the buyer requests the
coverage offered).

Given the product requests the seller receives, it chooses
to give the product to the buyer that reported the highest so-
cial marginal utility to it (4). Although the social marginal
utility gain will be positive, the seller’s or even the buyer’s
(but not both) local change in utility may be negative. In
Figure 2 both Buyer 1 and Buyer 2 accept the offers Seller
2 made to them. Seller 2 then chooses (as seen by message
(4) in the Figure) to give the product to Buyer 1 because
the social marginal utility reported by Buyer 1 was higher
than that reported by Buyer 2.

In addition to negotiation, we assume that a discovery
process occurs when an agent enters the system; it must
learn of the other agents near it and they must learn of
it. To make this happen quickly, an entering agent joins
the nearest sector to it, by listening for beacons on channel
zero. If there is no sector within range, the agent elects
itself manager of a new sector and begins attracting entering
agents to it by broadcasting a periodic beacon on channel
zero. It also starts negotiating with other managers over the
resources it needs to perform its subtask.

We also assume that a maintenance process takes place
throughout the life of the system. Sector managers must
make sure that the members of their sectors still exist, and
members must make sure that their managers still exist. In
our approach each member of a sector periodically sends a
brief message to its manager on the manager’s channel. If
the manager does not receive a message from a member, the
manager assumes the agent is no longer a member of the
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coalition and adjusts its evaluation of the coalition accord-
ingly. Likewise, the manager periodically sends a message
to each of its members on the channel the member uses. If
the member does not receive a message from its manager,
that member assumes the manager is no longer active as a
manager and joins the nearest coalition to it (as if it were
entering the system for the first time).

4. RESULTS
To examine the above classes of protocols on large num-

bers of agents, we built an asynchronous simulation testbed
for the EW Challenge [3] DSN. One limitation of the simu-
lation is that it does not model delays due to computation
time. In order to deal with this, it has the ability to add
random delays to messages that are sent. In future work we
plan to explore how increased delays affect overall system
performance.

Note that while we would like to compare our results to
optimal, the sizes of the configurations tested in this work
are too large to generate optimal values.

4.1 Organization Results
To compare the performance of local and social utility

based negotiation mechanisms, we varied factors such as
when agents can initiate and respond to requests, whether
sellers can initiate negotiations by advertising coverage, and
how many agents a seller can transfer to a buyer during a
negotiation. For each variation, we compared our results to
those generated by CNET. In the CNET adapted for our
domain, a buyer broadcasts a request. The seller collects
requests and responds with an offer that the seller is obliged
to fulfill if the buyer accepts it. This differs from our pro-
tocols. Since we are dealing with cooperative agents whose
priority is the welfare of the system, a seller need not honor
an offer. In other words, a CNET agent will respond only
to a single request, while an agent that uses our protocols
may respond to several requests simultaneously.

In total we tested fourteen protocols. We ran 100 exper-
iments each on 40, 70, and 90 node configurations in 100 x
100 foot regions populated by agents with viewable sensor
regions with 20 feet radii. For a given number of nodes,
we generated an arbitrary configuration and then ran each
of the 14 protocols on that configuration. By far the best
performing protocols were those that were socially based.

Because of space limitations, we include results from six
protocols with the following characteristics:

• Single-Node Social Protocol (SNSoc): Only sin-
gle nodes are transferred per negotiation cycle. Sector
managers are simultaneously buyers and sellers. Sell-
ers advertise regions of coverage they are willing to
give up. Value is based on social marginal utility.

• Multiple-Node Social Protocol (MNSoc): Same
as above, but either one or two nodes may be trans-
ferred per negotiation cycles.

• CNET Single Social Protocol (CNETSoc): So-
cially based CNET with single node transfer.

• Single-Node Local Protocol (SNLoc): Same as
SNSoc except that value is based on local marginal
utility.

Single Multiple CNet
local social local social local social

40 nodes
%∆UCS 6.5 61.2 6.3 60.6 2.1 15.6
Cycles 3 18 2 13 1 3

70 nodes
%∆UCS 24.6 50.0 23.6 47.8 14.7 14.7
Cycles 7 22 5 18 2 2

90 nodes
%∆UCS 44.2 70.9 42.7 67.6 36.7 39.7
Cycles 7 24 5 15 3 4.3

Table 1: 40, 70 and 90 Node Configurations

• Multiple-Node Local Protocol (MNLoc): Same
as MNSoc except that value is based on local marginal
utility.

• CNET Single-Node Local Protocol (CNETLo-
cal): Same as CNETSoc, but locally based.

Table 1 summarizes the results for the protocols above for
40, 70, and 90 node configurations. They show the average
percent change in global utility %∆UCS from the initial state
to a stable state and the approximate number of negotiation
cycles required to reach the stable state. In this context the
initial state is the set of rough sectors immediately after the
discovery phase. The stable state occurs when agents are no
longer able to engage in successful negotiations.

Of all the protocols SNSoc and MNSoc performed best.
It makes sense that these would perform better than the lo-
cally based protocols because of their increased social con-
text. We were surprised to find, however, that MNSoc
achieved slightly lower global utility than SNSoc did since
Sandholm [5] suggests that a contract over multiple objects
can help avoid local maxima that result from single ob-
ject contracts. One possible explanation is that transferring
more than one agent in a single transfer causes the system
to become stable more quickly. As a result, the system falls
into local maxima more often than it does when only trans-
fers of single agents are allowed. For example, if a sector
manager gives up two nodes to another at time t, then the
set of possible actions that the same sector manager can take
at time t + 1 is reduced, and it may not be able to make a
socially beneficial transfer that was unknown at time t. This
conclusion is supported by the fact that the average num-
ber of negotiation cycles required to reach a stable state
when MNSoc is used is less than the number when SNSoc
is used. The conclusions in [5] consider a non-cooperative
multi-agent system. In our cooperative organizations, the
need for larger contracts is lessened by a more informative,
social utility function.

While SNSoc does ultimately achieve higher global utility,
it is interesting to note that early on in the self-organization
process, MNSoc actually achieves higher utility. Figure 3
compares the average utility profiles of MNSoc and SNSoc
for 90 node configurations. It gives the percentage of the
final maximum utility achieved by SNSoc versus the average
number of negotiation cycles. It shows that before the first
14 negotiation cycles, MNSoc does better. Only after this
point does SNSoc pull ahead. The profile suggests a way of
choosing a negotiation protocol and limiting how long the
negotiation phase lasts. For instance, if the organization
must form quickly due to high communication costs or other

106



Average number of negotiation cycles
1 6 11 16 21 26 31 36

P
er

ce
nt

 fr
om

 M
ax

im
um

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Single Node
Multiple Node

Figure 3: Utility profiles for SNSoc and MNSoc 90 node

configurations.

constraints and achieving only 95% of the maximum utility
is acceptable, then it is better to use MNSoc since it will
reach this level of utility more quickly.

Also, evident in the graph is that in both cases, most of
the utility increase occurs early on in the self-organization
phase. This is corroborated by other results not shown here
that show that the number of transfers of agents from one
sector to another is high early on and then falls off rapidly.

Also of interest is that the fewer nodes in a configuration
there are, the greater the difference is between the socially
based protocols and the locally based ones (see Table 1).
One explanation is that when there are many nodes in a
fixed space, it is easier for these nodes to partition them-
selves to cover a given region. Thus, individual negotiation
decisions in a dense region do not have as great of an ef-
fect on the ultimate social utility of the configuration as
they do in less dense regions. While the more informed de-
cisions possible through the socially-based utility functions
certainly produce large improvements in utility in dense re-
gions, their greatest impact is seen in less dense regions.

4.2 Fault Tolerance and Message Traffic
A DSN must be able to reorganize itself after several of its

nodes go down. An additional concern of ours was that the
maintenance process as described in Section 3 would hinder
reorganization since if a sector manager fails, the nodes in its
sector simply join other sectors near them rather than try to
maintain the degraded sector. Therefore, we implemented
a second maintenance scheme whereby if a manager fails,
another node in its sector takes over its role.

To examine how well both mechanisms respond to node-
failure, we performed the following experiment for SNSoc
and MNSoc. For 100 different configurations we let 90 nodes
organize until they reached a stable organization. Then
starting from that stable state, we removed 10 nodes at ran-
dom and let the system reorganize once using the original
maintenance mechanism, once using the new one. Finally,
using the remaining 80 nodes as a starting configuration,
we let those nodes organize from scratch. We repeated this
process three more times, each time starting from the stable
90-node organization, removing the same set of nodes as in
the previous experiment plus an additional 10.

In all cases MNSoc organized more quickly than SNSoc
with only minor differences in final utility. Figure 4 shows
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Figure 4: MNSoc utility profiles for 80 nodes reorganiz-

ing two ways plus 80 nodes organizing from scratch
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Figure 5: MNSoc utility profiles for 50 nodes reorganiz-

ing two ways plus 50 nodes organizing from scratch

the utility profiles for MNSoc when 10 nodes fail. The graph
for SNSoc is similar. When only 10 nodes go down, main-
taining degraded sectors enables the system to reorganize
most efficiently. In other words, since losing only a small
number of nodes does not perturb the structure of the stable
organization much, it is best to work within that structure
and make only minor adjustments after node failure.

The above does not hold as more nodes go down. When 20
nodes fail, the two mechanisms have almost identical pro-
files. When 30 and 40 nodes go down, SNSoc reorganizes
most quickly with the original maintenance mechanism, fol-
lowed closely by organizing from scratch. With MNSoc or-
ganizing from scratch actually does better than reorganizing
with either maintenance mechanism; in fact it achieves bet-
ter utility than the other two options (see Figure 5). When
large numbers fail, trying to maintain a previous structure
hinders reorganizing and prevents the system from finding
a globally beneficial solution.

The final check of our self-organization procedure was to
verify that it keeps inter-sector communication low. We
built a simple message traffic model of the domain and tested
it on the stable 70-node organizations. The model showed
that on average approximately 85% of messages occur within
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sectors, indicating that our algorithm successfully divides
the agents such that most messages indeed occur within sec-
tors.

5. THEORETICAL MODEL
In addition to experimentation, we developed a theoretical

model of the negotiation process that builds on the idea that
increased social context can improve system performance.

Because our system is cooperative, we assume that agents
can share information, although the process of obtaining this
information may be costly. In a DSN, decisions about which
agent covers which area are affected by the interdependen-
cies that exist between the agents.

Definition 1 (Interdependency). Given that sector
managers SMi and SMj are responsible for tracking tasks
in sectors Si and Sj , we define an interdependency between
these two sector managers if AreaSi

T
AreaSj

6= ∅
A chain of interdependencies is given by an ordered list of

sector managers SMi1 , SMi2 , . . . , SMin−1
, SMin such that

AreaSi1

T
AreaSi2

6= ∅ . . . AreaSin−1

T
AreaSin

6= ∅. We

denote by n the maximal length of a possible chain of inter-
dependencies in a given system.5

We distinguish agents based on their information horizon,
the amount of information they can gather given by the
length of an interdependencies’ chain. We define an agent
that knows the information in a chain of k interdependencies
as follows:

Definition 2 (k-social, k ≤ n). Agent A is k-social
if its decision about the action it will perform is based on
information known by each agent in a chain of interdepen-
dencies of length k whose first element is A.6

To explain the process in which an agent (a buyer or a
seller) must decide which offer to accept or to whom it should
sell a resource, we refer the reader to Figure 6.

A1

A2 A3

A4 A5

Figure 6: A Decision Tree example for n = 3.

We first build a tree describing the chain of interdepen-
dencies7. Each node represents a sector manager, and each
edge represents an interdependency. In the figure, the num-
bers of each node represent the sector managers’ names.
The depth of the tree is the length of the interdependencies
chain. Assume that n = 3. The root is at level k = 0, and
the agent at the root is the one making a decision.

In Figure 6, agent A1 needs either to decide to whom
to sell a resource that A1 currently owns, or it must decide

5In general, an interdependency exists if the set of resources
needed by two agents making a decision intersect.
6In the setting analyzed so far, the agent referred to in this
definition corresponds to the sector manager.
7The interdependencies may actually be represented by a
graph, because there may be cycles of interdependencies
among the resources. So this tree is a mapping from this
graph to a tree, i.e., whenever a node that has already ap-
peared in the tree needs to appear again it is set to a leaf.

from whom to buy a resource it needs. We denote by ∆ij the
change in i’s utility caused by agent j’s selling to or buying
from agent i. If A1 is local (k = 0) it does not consider
the other agents, and by comparing ∆12 to ∆13 chooses to
interact with either A2 or A3 based which would produce
the greater change in its own utility. This is analogous to
the locally based protocols described in Sections 3 and 4.

If A1 is k = 1social, it compares ∆12 +∆21 to ∆13 +∆31.
In this case, A2 and A3 may be interacting simultaneously
with other agents, but since A1 sees only up to horizon 1,
it is unaware of any pending decisions further down the in-
terdependency chain. So A1’s decision may be wrong. For
example, if A1 accepts the transaction with A2 based on
the above comparison, it may lose, if A2 chooses A4 in-
stead of A1. We have not implemented a protocol in which
the agents are k = 1social. If we had, it would proceed
as follows: 1) A buyer broadcasts a request for coverage.
2) A seller responds with an offer. 3) The buyer does not
wait to collect responses from sellers; it simply responds to
the seller, telling it what the buyer’s local change in utility
would be if it were to receive the seller’s offer. 4) The seller
ranks all responses it receives based on the sum of its lo-
cal marginal utility and the reported buyers’ utilities. The
seller chooses the buyer that gives the highest sum.

If A1 is k = 2social, it knows whether A2 is negoti-
ating with A4 and A5 while A2 is negotiating with A1.
Here A1 decides by computing max{∆21 +∆12, max{∆24 +
∆42, ∆25 + ∆52}}.

If the “winner” of this maximum is ∆21 + ∆12, sector
manager A2 will not transact with A4 or A5. Therefore,
sector manager A1 to make his decision compares ∆21 +∆12

to ∆13 + ∆31 and chooses A2 or A3 accordingly. If the
“winner” of the above maximum is ∆24 +∆42 or ∆25 +∆52,
then the value for max{∆21 + ∆12, max{∆24 + ∆42, ∆25 +
∆52}} is set to −∞, so that A1 does not take A2 as an
option in its decision because from its perspective A2 will
accept the transaction with either A4 or A5 and not with
A1; in this case A1 chooses A3.

The k = 2social case is analogous to the social marginal
utility protocols we have developed. In those protocols, the
seller at the root does not actually do all of the calcula-
tions described above. Rather, parts of the calculation are
done further down the tree and propagated up. For exam-
ple, if A1 in Figure 6 is a seller, A2 is a buyer and cal-
culates max{∆21 + ∆12, max{∆24 + ∆42, ∆25 + ∆52}}. If
the “winner” is ∆21 + ∆12, A2 propagates this value up to
A1. Otherwise, it does not, and A1 knows only to consider
negotiating with A3.

Notice that Sandholm and Lesser [7] assume self-interested
agents, which are necessarily k = 0social8. In their case,
agents must transact on complex deals in order to approxi-
mate the maximal utility. We take advantage of the cooper-
ativeness of the system by allowing the agents to be social
and, thus, obtain better deals in terms of the complete sys-
tem without the need to transact over more complex deals.

Results obtained from our simulations show that social
agents attain higher utilities than local agents and that in
configurations with few agents, the difference between the
organizational utility obtained by social agents and that ob-

8In this paper, we are assuming that communication be-
tween the cooperative agents is free. It is not reasonable to
assume that self-interested agents will exchange this infor-
mation for free, although they may benefit from it.
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tained by local agents is greater than it is in configurations
with many agents. We can understand these results from
the theoretical model. We denote by P (si) the probability
of sector i’s manager’s making the “correct” decision. If sec-
tor i’s manager chooses to transact with agent j and j also
chooses to transact with agent i, then we say that agent i

has made the right choice. Therefore, P (si) is a conditional
probability that the root of the interdependency tree has
made the right decision. This probability is conditioned on
the decisions of the other nodes in the tree. The more social
the sector manager is, the more accurate P (si) is. If the sec-
tor manager knew all the information in the complete tree
then P (si) would be 1 (in the decentralized version of the
problem9). Hence, the result we obtained that being social
is better than being local is supported by the theoretical
model. The utility of the organization is higher as long as
the value of P (si) increases, and this value increases as long
as the sector manager considers larger values of k (i.e, the
agents are more social).

The result that being social in sparsely populated config-
urations has a greater effect than being social in a dense
configuration is also supported by the model. In such a set-
ting, because there are fewer interdependencies, P (si) will
be greater than in a dense configuration with many inter-
dependencies. Therefore, the difference in utility will be
greater as well.

6. CONCLUSIONS AND FUTURE WORK
This paper presents an incremental approach to self-organ-

ization based on bottom-up coalition formation. Agents ne-
gotiate to maximize the system’s global utility by using a
variety of protocols based on local or social marginal utility.

Our approach is novel in the sense that it allows for dif-
ferent levels of social agents to be tested. Our protocols
can represent a continuum of agents from locally-oriented
to fully-informed. Empirical results show that social agents
do attain higher utilities than locally-based or CNET-based
agents do. In other words, although the system achieves a
stable organization in all the cases tested, negotiating with
social awareness in an incremental fashion avoids many of
the local maxima of non-social utility based negotiations.
We also show that the organizations obtained are robust to
agent failure; the agents do indeed reorganize after some
number of them are deactivated, and as long as the number
of nodes that fail is not so great as to obliterate the structure
already in place, reorganizing to a stable state happens more
quickly than simply organizing from scratch and achieves
similar utility values.

Future work will look at other types of organization tem-
plates. We will study more complex topologies, such as or-
ganizations based on hierarchies with multiple levels which
may require various communication models for the exchange
of information at the different levels. Another cost model
worth studying involves the computation of the global util-
ity resulting from agents’ negotiating based on combinations
of local and social marginal utilities. Adding explicitly the
cost of sending a message (e.g., given by delays) and ana-
lyzing the trade-off faced by agents between obtaining more
accurate information and the time it may take to gather it
deserves more research as well. In this work, we have as-

9The optimal centralized organization may still be different
from the optimal decentralized version.

sumed that all the agents are homogeneous. Further work
will look at systems where the sector managers require cer-
tain computational capabilities that only some of the agents
have.
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Abstract

Organizational design and instantiation is the process
that accepts a set of organizational goals, performance re-
quirements, agents, and resources and assigns responsibil-
ities and roles to each agent. We present a prescriptive,
knowledge-based organizational design and instantiation
process for multi-agent systems. An important aspect of our
approach is the separation of application-specific organi-
zational knowledge from more generic organizational co-
ordination mechanisms. We describe our model of organi-
zational design and our search process. We also present ex-
ample organizations generated by our automated system for
the distributed sensor network domain for different environ-
mental characteristics and performance requirements.

1. Introduction

The ability to create and maintain effective multi-agent
organizations is key to the development of larger and more
diverse multi-agent systems. Organizational control is a
multilevel control approach in which long-term organiza-
tional goals, roles, and responsibilities are developed and
maintained to serve as guidelines for making detailed op-
erational control decisions by the individual agents. These
organizational guidelines reduce the complexity of each
agent’s operational decision making, lower the cost of dis-
tributed resource allocation and agent coordination, help
limit inappropriate agent behavior, and reduce communica-
tion requirements [2]. Designed organizations are created
by applying organization-design knowledge, organizational
goals and performance requirements, and task-environment
information to generate explicit organizational responsibil-
ities that are then elaborated by the individual agents into
appropriate operational behaviors.

∗ The  rst author is a student

To date, multi-agent organizational structures used for
control have been manually hand-crafted, sometimes as-
sisted by automated template expansion [12] or computed
adjustments made to a pre-determined structure [11]. In
this paper, we describe recent work on developing an auto-
mated organizational design and instantiation system that is
able to create appropriate, yet substantially different, orga-
nizational forms based on different requirements and task-
environment expectations. One important aspect of our ap-
proach is the separation of application-speci c organi-
zational knowledge from more generic organizational
coordination mechanisms. This separation will allow the
reuse of organizational coordination mechanisms across a
wide range of problem domains and environmental situa-
tions.

The multi-agent organizational design and instan-
tiation problem can be summarized as follows. Given
a problem-domain description of the organizational
goals, environmental conditions, performance require-
ments, possible roles, agents, and resources, assign both
problem-domain and coordination roles and responsibili-
ties to each agent such that the organizational performance
requirements are satis ed and the organization operates ef-
fectively over anticipated environmental conditions. This
assignment constitutes the organizational structure. To
solve this problem in an automated fashion, we have de-
veloped the prescriptive, knowledge-based design process
illustrated in Figure 1, which we describe in detail in Sec-
tion 2.

Before continuing, it is important to clarify the distinc-
tion between organizational and operational control and
where our work  ts into it. Organizational roles and re-
sponsibilities represent general long-term guidelines. Op-
erational control, on the other hand, involves speci c short-
term agreements among agents to perform speci c activities
for speci c periods of time. Our process does not pertain
to operational activities. Rather than describe how particu-
lar control decisions are made, it ensures that suf cient re-
sources and coordination mechanisms are available so that
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Figure 1. Organizational Design Process

agents can make ef cient operational decisions throughout
the life of the organization.

As mentioned above, our approach makes use of a sepa-
ration we have observed between the problem-domain and
organizational coordination. The former, shown on the left
side of Figure 1, involves decomposing high-level organi-
zational goals and matching them to problem-domain roles.
The latter, shown on the right, pertains to the coordination
mechanisms used by the agents performing those roles. The
result is a set of bindings for each agent to both problem-
domain speci c and coordination-speci c roles as illus-
trated in Figure 4(c).

As an example, consider a simple distributed sensor net-
work (DSN) application. A problem-domain organizational
goal might be to track all vehicles moving within a moni-
tored area with a positional accuracy within 3 meters and
a detection delay of at most 3 seconds. The environmen-
tal model indicates the expected traf c volume, spatial den-
sity, arrival rate, and movement characteristics. The avail-
able roles might be radar-based scanning and data process-
ing which are clearly appropriate for a variety of scenar-
ios. The best way to coordinate the agents playing the roles,
however, is dependent on a number of factors. For exam-
ple, if the area to be scanned is small enough that only a
few agents are necessary, a peer-to-peer mechanism may be
the right choice. If many agents are required, new vehicles
arrive frequently, and the scanning resources are scarce, a
multi-level hierarchical structure may be more appropriate.

It is our intuition that organizational coordination knowl-
edge transcends the problem domain. Therefore, an auto-
mated system can include generic coordination knowledge,
requiring the developer to supply information about the
problem domain only. The system itself can then use both
sets of knowledge in determining an appropriate organiza-
tional structure for the agents. Separating problem domain
knowledge from coordination knowledge contributes to the
 eld of organizational design in that it allows us to take a
prescriptive, knowledge based approach to organizational

design and instantiation that does not pre-specify coordi-
nation mechanisms.

Past work in multi-agent organizational design has been
purely descriptive, such as the organizational ontology of
Fox, et. al. [4], or has used predetermined organizational
forms as in Pattison, et. al. [12]. In our work only the
problem domain features need to be speci ed; organiza-
tional structures are found based on domain-independent
coordination knowledge. So and Durfee’s work [11, 10]
is the closest to ours in that they have a model based on
the task environment, organizational structure, and perfor-
mance metrics and explore the question of how to choose
the best organizational structure for a given problem. How-
ever, they assume a hierarchical structure and are primar-
ily concerned with making span of control decisions within
it.

Still other multi-agent work deals with coordinat-
ing agent activity but emphasizes operational issues rather
than organizational ones. STEAM [15], for instance, pro-
vides a hierarchical role-based framework for the quick for-
mation of agent teams and coordination between them.
Within our context, STEAM is an example of the type of co-
ordination mechanism that could exist within the automated
system’s store of knowledge. Similarly, GPGP [9, 3] pro-
vides a family of coordination mechanisms each of which
 ts within the scope of the automated designer’s knowl-
edge.

The remainder of the paper is organized as follows. Sec-
tion 2 formally de nes our model and describes the design
and search processes. Section 3 provides examples of or-
ganizational designs generated by a prototype designer we
have built for a DSN under various environmental condi-
tions and performance requirements. We conclude and de-
scribe future work in Section 4.

2. Model and Design Process

2.1. Problem-Domain Inputs

Refer once more to the left side of Figure 1. The environ-
mental model M gives the general expectations of the envi-
ronment over a period of time and is represented as a set of
attribute-values pairs:

M = {〈fi, vfi
〉} (1)

where fi is a user speci ed, domain speci c environmental
feature and vfi

∈ R.
The set of performance requirements Q specify the re-

quirements that must be met by the organization in order
for it to satisfy the organizational goals. We represent Q

as a set of attribute-value pairs similar to the environmen-
tal model:

Q = {〈qi, vqi
〉} (2)
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where qi is a feature and vqi
∈ R is its value.

Figure 2 shows an example environmental model and set
of performance requirements for the DSN example that we
will refer to throughout the paper. The example is a sim-
pli ed version of the EW Challenge Problem domain [7] in
which agents that control radar-based scanners must coop-
erate to track vehicles moving through a rectangular region.
The environmental model indicates the expected traf c vol-
ume, spatial density, arrival rate, etc. The performance re-
quirements are to track all vehicles with three meters of ac-
curacy and a detection delay of at most 3 seconds.

Environmental Model
maxNewArrivals 10

maxTracks 10
maxVelocity 10 m

sec

vehicleWidth 2m

(x,y) (0,0)
length 90
width 90

Performance Requirements
Detect Delay 3sec

Track Resolution 3m

Figure 2. Example environmental model

Returning to Figure 1, an organizational goal g is a high-
level, long-term objective of an organization. We represent
the decomposition of organizational goals in a tree T with
root r. The nodes of T are goals and the edges represent
subgoal relations such that there exists an edge from i to j

if and only if p(i, j) is true where p(i, j) is a predicate indi-
cating that i is the parent of j. Figure 3 illustrates a goal tree
for our example DSN. It shows that the high-level root goal
MONITOR can be decomposed into a subgoal for detecting
new vehicles and one for tracking detected vehicles. Sim-
ilarly, DETECT and TRACK can be further decomposed.

Monitor

Detect Track

Scan

Verify

Handle Fuse Update

Figure 3. Example DSN goal tree and associated
communication graph (dotted edges)

Each goal g is parameterized by the environmen-
tal model and the performance requirements. We repre-
sent the parameters of a goal as a set P ⊆ M ∪ Q. For the

root r, P = M ∪ Q. Every other goal g inherits the pa-
rameters of its parent unless otherwise speci ed by the
developer. We also note that goals can be qualitatively dif-
ferent along a spectrum between continuous and trig-
gered which can effect the most appropriate bindings for it.
The DETECT goal in Figure 3 is a good example of a con-
tinuous goal. The organization must always look for new
vehicles regardless of environmental or other features. DE-
TECT can, therefore, be achieved with relatively static role
assignments. This does not mean that the operational ac-
tivities associated with performing these roles are static,
but that a set of role-goal-agent bindings remains ef-
fective over time. TRACK on the other hand is a trig-
gered goal. Each newly detected vehicle generates a new,
more transient, tracking goal parameterized by the loca-
tion of the detected vehicle. Therefore, it requires agents
and roles to be assigned and modi ed in response to en-
vironmental dynamics. In addition both DETECT and
TRACK are spatial goals in that their parameterizations in-
clude particular areas to cover.

In addition to its parameters and features, each goal g

has a to-be-assigned list TAL of responsibilities that need
to be assigned to an agent or agents in order for g to be sat-
is ed. We de ne a goal g ∈ L where L is the set of leaf
goals to be satisfied if agents bound to it perform each of
the responsibilities in its to-be-assigned list within the per-
formance requirements on it. For all g 6∈ L, g is satis ed if
all of its children are satis ed.

Figure 4(a) shows an example of the parameters and to-
be-assigned list of the goal SCAN from Figure 3. It inherits
all parameters except for maxTracks and Track Resolution.
Although SCAN and the other goals in our example have
single responsibilities in their to-be-assigned lists, in gen-
eral a goal will have multiple responsibilities that must be
ful lled.

As in a traditional planning system, where goal decom-
position continues until the subgoals can be achieved by
primitive actions, organizational goal decomposition con-
tinues until the to-be-assigned lists of subgoals can be ful-
 lled by the assignment of roles. Roles are “atomic” job de-
scriptions used to satisfy organizational goals. Each role ri

has an assignable-list ALi of responsibilities that it can per-
form, a quality function fi indicating how well it achieves
a goal, a set of requirement functions, Fi, dependent on the
parameters of the goals the role may be bound to, and a
function Di specifying how the role when bound to a goal
can be distributed among a group of agents. Thus, we de-
 ne the set of available problem-domain roles R as

R = {ri} = {〈ALi, fi, Fi, Di〉} . (3)

Figure 4(b) shows the roles and their assignable lists avail-
able in the DSN example. As with the goals, although each
has only a single responsibility in its AL, in general roles
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can have multiple responsibilities. For each role, the func-
tions fi and Fi are dependent on goal parameters (repre-
sented by PX where X indicates one of the goals in Fig-
ure 3) and Di is a function of the parameters of the goal the
role is bound to and the set of available agents A (discussed
below). Fi for RADARSCANNER, for instance, given the
parameters of SCAN determines how often the region must
be scanned in order to guarantee that vehicles are detected
within the acceptable track delay requirement.

Certain goals require information from other goals. We
represent such communication relationships as a directed
communication graph G = (L, E) where L is the set of
leaf goals in T and E is a set of edges between the leaves
such that there exists an edge (u, v) if information must  o w
from goal u to goal v. The dotted edges between goals in
Figure 3 represent the communication graph for our DSN
example. Suppose there is an edge in the communication
graph from g1 to g2 and that agent sets A1 and A2 are bound
to each respectively. If the goals are spatial in character, it is
not necessarily the case that every agent in A2 needs all of
the information from every agent in A1. We represent this
notion within the parameterization of each goal by specify-
ing for each spatially de ned goal the area the goal is re-
sponsible for. Thus, a goal requires information from an-
other only if the information pertains to the goal’s area. As
we will see below, after the responsibility of handling a goal
is distributed among a set of agents, each agent becomes re-
sponsible for a subregion of the whole and sends informa-
tion to the relevant agents participating in connected goals.
For example, suppose g1 is responsible for area X and sends
information to g2 responsible for Y with the constraint that
X ⊆ Y . When g1 and g2 are distributed among a set of
agents, they are broken into g1

1 . . . gn
1 with areas X1 . . .Xn

and g1
2 . . . gm

2 with areas Y1 . . . Ym respectively. gi
1 sends in-

formation to g
j
2 with the constraint that Xi ⊆ Yj .

To complete the problem-domain input, let A = {ai}
be the set of agents available to the organization. For ai we
specify a set φi of features such as its location, plus a set
ρi = 〈rk , dk, mk〉 of each role rk that the agent is able to
play, the percent drain dk on the agent’s resources caused
by rk, and the number of messages per time mk the agent
sends during its operational performance of rk (mk may be
a function). In addition we specify a set Ci of capabilities:

Ci = {〈cj , vcj
〉} (4)

where cj is a capability and vcj
∈ R is its value. Thus,

ai = 〈φi, ρi, Ci〉 (5)

2.2. Problem-Domain Matching

With the above input, the design process  rst attempts to
match problem-domain roles to organizational goals to form

role-goal bindings, assignments of speci c roles to each leaf
goal in T . Any role whose assignable-list contains a goal’s
to-be-assigned list may be bound to that goal. In the DSN
example the RADARSCANNER role can be bound to the
SCAN goal forming the RADARSCANNER→SCAN role-
goal binding. When a role is bound to a goal, it produces re-
quirements as speci ed by the role’s requirement functions.
We de ne the set of role-goal bindings within an organiza-
tion as a set of triples:

RGB = {〈ri, gj , µk〉} (6)

where ri ∈ R and gj is a leaf goal of T such that
TALj ⊆ ALi, and µk = {〈µh, vµh

〉} is a set of re-
quirement attribute-value pairs determined by ri’s re-
quirement function parameterized by gj and its parame-
ters. For RADARSCANNER→SCAN, µh and µv specify
the scan frequency that must be maintained.

The next step in the process is to bind agents
to each role-goal binding. Continuing with the
RADARSCANNER→SCAN example, the design pro-
cess identi es agents that can meet the requirements
of the role-goal binding according to the agents’ capa-
bilities and RADARSCANNER’s distribution function
to form a set of role-goal-agent bindings. The particu-
lar binding speci es the role the agent is bound to, the de-
composed sub-goal it is responsible for, and the sets of
agents it receives information from and sends informa-
tion to. Thus, we de ne the set of role-goal-agent bindings
of agent ai ∈ A as

RGABai
= {〈rk , gj , g

′
j , fg′

j
, tg′

j
, team〉} (7)

where rk ∈ R, gj is a leaf goal of T , g′
j is a subgoal of

gj as determined by rk’s decomposition method, fg′

j
is the

set of agents ai receives information from pertaining to this
binding, tg′

j
is the set of agents ai sends information to, and

team is a boolean  ag indicating that this binding is a team-
ing role assignment (described below).

2.3. Coordination-Domain Matching

Up to this point, the design process involves problem-
domain speci c knowledge of goals, roles, performance re-
quirements, agent capabilities, etc., and is shown in the left
half of Figure 1. What is advantageous to our approach
is that the remainder of the organizational-design pro-
cess can be addressed using more domain-independent or-
ganizational coordination knowledge. In general, a role
will require multiple agents to ful ll the performance re-
quirements of an organizational subgoal. In our example,
sensor agents have limited range and synchronized scan-
ning by at least three agents is required throughout the cov-
erage area. Not only must role-goal-agent bindings be

114



found as above, but those agents must also be coordi-
nated in performing their roles. The agents bound to
RADARSCANNER→SCAN have the necessary capabil-
ities to satisfy the requirements, but unless their scanning
is synchronized correctly, holes may exist in the cover-
age.

The need to coordinate these agents causes the sys-
tem to generate a new coordination goal that was not part
of the original goal decomposition. This organizational-
coordination goal must be ful lled by more problem-
domain-independent coordination roles, as shown on
the right side of Figure 2. Possible roles for coordinat-
ing our set of sensing agents include: peer-to-peer negoti-
ation of scan schedules and a simple, one-level hierarchy
where a manager agent (potentially, but not necessar-
ily, one of the sensing agents) develops the scan sched-
ule for the group. A coordination role-goal-binding
can, itself, require a set of agents to satisfy it, caus-
ing the creation of another higher-level coordination goal.
For example, if the span of control of potential man-
ager agents requires the use of multiple managers, the
activities of these managers would also need to be co-
ordinated again, potentially using a peer-to-peer or hi-
erarchical approach. If the latter is chosen, management
of our sensing agents would involve a multi-level hier-
archy of sensing, middle-manager, and overall manager
roles.

The sets of role-goal-agent bindings and their parameters
specify the long-term structure, role assignments, authority
relationships, and communication paths of the designed or-
ganization. These are particularly applicable to static goals.
However, these long-term bindings alone can be insuf cient
to satisfy the organizational goals when we consider dy-
namic goals which may be better satis ed by establishing
teams [4, 15, 13, 14, 8, 1]. A team, coalition, or congrega-
tion is a temporary structure that is formed as needed to sat-
isfy a particular task when it enters the environment and is
disbanded when the task leaves the environment or is com-
pleted. In our simple example, tracking a newly detected ve-
hicle might be done by creating a team whose membership
changes as the vehicle moves through the monitored area.
Teams are not strictly part of the organizational structure
since the assignment of agents to roles associated with the
team will not be as long lived as the assignment of agents
to roles to satisfy organizational goals. However, a team is
not a purely operational construct either, since suf cient re-
sources must be set aside organizationally to allow for gen-
erating and participating in teams. Furthermore, when an
agent within an organization is participating in a team, its
team activities will have an effect on how it satis es its other
roles. Therefore, the organizational structure must account
for and be prepared for team activity by its members.

We do not generate transient teams in our organization-

design process, but we must ensure that the organizational
structures and resources exist to generate effective teams as
needed. Thus, in our design process we reserve resources
within agents capable of participating in teams. For the
DSN example, this means  nding role-goal-agent bindings
for the leaf goals of TRACK, but setting the team  ag to
true to indicate that the agent participates in the team only
as needed. A team role is similar to an organizational role
in that the agent with a team-role responsibility will have
an expected number and frequency of messages to send and
amount of work to do. The difference is that the agents
bound to these roles will only be expected to perform those
activities if and when they are called upon to join a team.
Furthermore, we must also specify appropriate coordination
roles in order to enable teams to form. In this work, we de-
 ne a TEAMINITIATOR role that is responsible for gener-
ating teams operationally.

Figure 4(c) shows an example set of bindings for a single
agent participating in the DSN. For each binding, it speci-
 es the which organizational subgoal it is bound to, and the
role and agents in that role to which it sends information. If
the role is a teaming assignment such as FUSER→FUSE, it
is signi ed with a superscript T .

2.4. Search and Suitability

In general, multiple roles can satisfy the same organiza-
tional subgoal, many agents can be bound to the same role-
goal binding, and a single agent can play multiple roles si-
multaneously, making it computationally infeasible to gen-
erate all possible bindings. Therefore, we have developed
a prototype system that uses organization-design knowl-
edge and heuristics to generate a reasonable set of bindings.
For the domain-speci c portions of the design process, the
heuristics rely on information provided by the developer in
the quality, requirements, and decomposition speci cations
of the roles plus the capabilities of the agents. In general the
heuristics consider which roles should be bound to the or-
ganizational goals, which agents can be bound to particular
role-goal bindings and the computational and communica-
tion loading on agents that would result under different as-
signments.

For coordination goals, the design system goes
through a similar process of  nding role-goal-agent bind-
ings for the coordination goals. The main difference
is that the roles available for satisfying the coordina-
tion goals and the search heuristics exist within the
organizational-coordination library as domain-independent
knowledge. In the current prototype the parameters on co-
ordination roles and goals are not fully generalized; some
parameterization values still refer to problem-domain pa-
rameters. In future research, we plan to develop generic ab-
stractions of problem-domain parameters (that would
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SCAN((x,y), length, width, maxNewArrivals,
maxVelocity, vehicleWidth, detectDelay)

TAL: Scanning

(a) Parameters and to-be-assigned list of SCAN goal

Role AL fi Fi Di

RADARSCANNER Scanning PS PS PS , A

VERIFIER Verifying PV PV PV , A

HANDLER Handling PH PH PH , A

FOCUSSEDRADAR Updating PU PU PU , A

FUSE Fusing PF PF PF , A

(b) Problem-Domain Roles for the DSN example showing
each role’s assignable list and the parameters to each of the
functions in Equation 3. PX represents the parameters of a
goal where X represents one of the goals in Figure 3. A is
the set of agents.

Agent S24 (82.5, 52.5)
RADARSCANNER→SCAN((62.5,32.5),40,40)

TO: VERIFIER S22
FUSER→FUSE((45,60),45, 30)T

TO: FOCUSSEDRADAR S22 S24 S23 S18 . . .
TO: VERIFIER S22
FROM: FOCUSSEDRADAR S22 S24 S23 . . .
FROM: HANDLER S22

SUBORDINATE→COORDGOAL(SCAN)
TO: MANAGER S22
FROM: MANAGER S22

. . .

(c) Set of problem-domain and coordination role-goal-agent bind-
ings for a single agent

Figure 4. Representation of goals, roles, and
role-goal-agent bindings

be included as part of the problem-speci c knowl-
edge) that would provide a completely clean separation of
problem-domain and coordination parameters.

Although the heuristics above should lead to an orga-
nization that meets the performance requirements, they do
not give enough information to rank a set of feasible can-
didate organizations all of which satisfy the requirements.
We must consider other factors in how we evaluate them.
For that it is important to have an organizational evalua-
tion function that is based on user speci ed criteria to deter-
mine the utility of a particular candidate. In future work, we
plan to develop a detailed evaluation capability both to eval-

uate fully speci ed organizations and to prune the search
through partially complete bindings. For now, we rely on
simple utility criteria stemming from the relative costs of
agent load and communication.

3. Example Organization Designs

We present below four example organizational designs
generated by our automated system on the goal tree and
communication graph in Figure 3, the parameters in Fig-
ure 2, and the roles in Figure 4(b). We varied the input along
several dimensions: size of the area to be scanned and num-
ber of agents available, the value of the acceptable track de-
lay performance requirement, and the relative costs of com-
munication and agent load. In all cases the agents we used
were evenly spaced throughout the region, each with iden-
tical features, roles they can be bound to, and capabilities.
Figure 5 summarizes the results.

Agents Area Delay Com. Cost Load Cost
36 90′ × 90′ 3s 0.6 0.4

Single-level hierarchy: 6 Managers. Veri er and Handler
roles multiplexed within same agent as Manager. Managers
coordinate peer-to-peer.

Agents Area Delay Com. Cost Load Cost
36 90′ × 90′ 3s 0.4 0.6

Single-level hierarchy: 6 Managers. Veri er and Handler
roles not multiplexed with Manager. Managers
coordinate peer-to-peer.

Agents Area Delay Com. Cost Load Cost
36 90′ × 90′ 2s 0.6 0.4

Two-level hierarchy: 6 mid-level Managers. Veri er and
handler roles multiplexed within mid-level Managers.
One upper-level Manager to coordinate mid-level Managers.

Agents Area Delay Com. Cost Load Cost
100 150′ × 150′ 3s 0.6 0.4

Two-level hierarchy: 9 mid-level Managers. Veri er and
handler roles multiplexed within mid-level Managers.
Two upper-level Managers to coordinate mid-level Managers.
Upper-level Managers coordinate peer-to-peer.

Figure 5. Example Organizational Designs

In the  rst design scenario, we used 36 agents in a
90′ × 90′ rectangular area with an acceptable track delay
performance requirement of 3 seconds, and the cost of com-
munication greater than that of agent loading. The result-
ing organization was a single-level hierarchy with 6 man-
agers each managing 6 agents. The managers coordinated
among themselves using a peer-to-peer mechanism. Fur-
thermore, in order to minimize communication, there were
6 verifying and handling roles each multiplexed within the
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same agents as the managing roles. This organization corre-
sponds closely to the hand-crafted organizational structure
used for the EW Challenge Problem [7] where communi-
cation cost was a major concern. The performance of this
organizational form relative to others was recently tested
experimentally [5, 6]. Also, in this scenario and the oth-
ers, the FUSER and FOCUSSEDRADAR roles were set
as team roles with the TEAMINITIATOR role distributed
among the HANDLER agents.

When we switched the relative costs of communication
and load, the resulting organizational design was still a
single-level hierarchy, but the verifying and handling roles
were no longer multiplexed within the same agents as the
manager roles. Instead they were distributed to separate
agents in order to minimize load. In effect because com-
munication was inexpensive, the organization could afford
to use more communication in order to balance the compu-
tational load among the agents.

For the third scenario, we used the same costs as in the
 rst, but reduced the acceptable track delay to 2 seconds.
This time the generated organization was a two-level hier-
archy with 6 mid-level managers and 1 upper-level man-
ager to coordinate them. At  rst this may seem counter-
intuitive since increasing the level of hierarchy can often
introduce delays. However, in this problem with a small ac-
ceptable delay on new detections, it is critical that the scan-
ning agents have tightly synchronized scan-schedules. Be-
cause producing a shared scan-schedule can be done in ad-
vance of detection activities, the design system added a sec-
ond level of hierarchy in order to resolve scan-schedule con-
 icts among the managers in a centralized fashion.

In the last scenario, the parameters were also the same as
in the  rst run except that we increased the number of agents
to 100 and the size of the region to 150′ × 150′. In this case
the system generated another two-level hierarchy this time
with 9 managers and 2 upper-level managers which coordi-
nate using a peer-to-peer mechanism.

Overall, we were quite pleased that our design sys-
tem produced such different organizational forms given the
changes to the environmental characteristics and perfor-
mance requirements we presented it with. These results con-
 rm for us the usefulness of our approach in generating or-
ganizational forms without pre-speci ed organizational in-
formation.

4. Conclusions and Future Work

We believe that the prescriptive, knowledge-based or-
ganizational design process we have presented has great
promise for the  eld of multi-agent organizational design. It
relies on a separation between problem-domain and organi-
zational coordination-domain knowledge to generalize co-
ordination mechanisms across domains, requiring a devel-

oper only to supply problem-speci c information. The re-
sults from our prototype system show that through this pro-
cess we are able to design organizations of different forms
by varying performance requirements and environmental
characteristics. We believe, this is the  rst work to do so.

We have identi ed several areas of future work stem-
ming from the initial research presented here. First, we will
add an evaluation capability to our system that, given the
bindings of a set of candidate organizations, performance
requirements, and more detailed evaluation criteria speci-
 ed by the developer, will rank the candidate organizations.
We also hope to apply the evaluation capability to partial
bindings in order to prune the search for a suitable organi-
zation. Another long-term goal is that in addition to evalu-
ating generated organizations, we would like the system to
suggest what additional resources and capabilities, if they
were provided, would have suppored a better organization.

In addition, we must continue to re ne our understand-
ing of coordination-domain knowledge so as to parameter-
ize the coordination roles more appropriately. Part of this
will involve understanding the distinguishing features of
goals and how those features relate to the mechanisms avail-
able to coordinate the agents bound to those goals. In part
this will involve a greater understanding of aspects such as
how resource contention, the number of agents bound to a
goal, and the interdependency among agents and goals in-
terrelate.

References

[1] C. H. Brooks and E. H. Durfee. Congregation formation in
multiagent systems. Journal of Autonomous Agents and Mul-
tiagent Systems, 7:145–170, 2003.

[2] D. D. Corkill. A Framework for Organizational Self-Design
in Distributed Problem-Solving Networks. PhD thesis, Uni-
versity of Massachusetts, Amherst, Massachusetts 01003,
Feb. 1983. (Also published as Technical Report 82-33, De-
partment of Computer and Information Science, University
of Massachusetts, Amherst, Massachusetts 01003, Decem-
ber 1982.).

[3] K. Decker and V. Lesser. Generalizing the partial global
planning algorithm. International Journal on Intelligent Co-
operative Information Systems, 1(2):319–346, June 1992.

[4] M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin. An
organization ontology for enterprise modelling. In M. Pri-
etula, K. Carley, and L. Gasser, editors, Simulating Organi-
zations: Computational Models of Institutions and Groups,
pages 131–152. AAAI/MIT Press, 1998.

[5] B. Horling, R. Mailler, and V. Lesser. A Case Study of Or-
ganizational Effects in a Distributed Sensor Network. 2004.

[6] B. Horling, R. Mailler, M. Sims, and V. Lesser. Using and
Maintaining Organization in a Large-Scale Distributed Sen-
sor Network. Proceedings of the Workshop on Autonomy,
Delegation, and Control (AAMAS03), July 2003.

117



[7] B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker,
K. Rawlins, and V. Lesser. Distributed sensor network for
real time tracking. In Proceedings of the 5th International
Conference on Autonomous Agents, pages 417–424, Mon-
treal, June 2001. ACM Press.

[8] M. Klusch and A. Gerber. Dynamic coalition formation
among rational agents. IEEE Intelligent Systems, 17(3):42–
47, May/June 2002.

[9] V. R. Lesser, K. Decker, T. Wagner, N. Carver, A. Gar-
vey, B. Horling, D. Neiman, R. Podorozhny, M. N. Prasad,
A. Raja, R. Vincent, P. Xuan, and X. Q. Zhang. Evolution of
the GPGP/TÆMS domain-independent coordination frame-
work. Autonomous Agents and Multi-Agent Systems, 2003.
(Accepted, conditionally, 8/02).

[10] Y. pa So and E. H. Durfee. Designing tree-structured organi-
zations for computational agents. Computational and Math-
ematical Organization Theory, 2(3):219–246, 1996.

[11] Y. pa So and E. H. Durfee. Designing organizations for
computational agents. In Simulating Organizations: Com-
putational Models of Institutions and Groups, pages 47–64.
AAAI Press/MIT Press, 1998.

[12] H. E. Pattison, D. D. Corkill, and V. R. Lesser. Instantiating
descriptions of organizational structures. In M. N. Huhns,
editor, Distributed Artificial Intelligence, Research Notes in
Arti cial Intelligence, chapter 3, pages 59–96. Pitman, 1987.

[13] T. Sandholm and V. Lesser. Coalitions among computation-
ally bounded agents. Artificial Intelligence, Special Issue on
Economic Principles of Multi-Agent Systems, 94(1):99–137,
Jan. 1997.

[14] O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation. Artificial Intelligence, 101(1–
2):165–200, 1998.

[15] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G. Kaminka,
S. Marsella, and I. Muslea. Building agent teams using an ex-
plicit teamwork model and learning. Artificial Intelligence,
110:215–240, 1999.

118




